Taxonomy and Marine Natural Products Research

  • John Blunt
  • John Buckingham
  • Murray Munro
Reference work entry


A taxonomic overview of the marine environment is presented along with specifics on the key phyla. This is accompanied by a brief history of marine natural products research, the aspirations in this field of research, and an analysis, on a taxonomic basis, of the results of the past 60 years of marine natural products research. In the final sections of the chapter, conclusions are drawn from the work as to the phyla that might be of interest for future research.


Natural Product Marine Organism Brown Alga Marine Species Body Plan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Doak W (1979) The cliff dwellers: an undersea community. Hodder and Stoughton, New ZealandGoogle Scholar
  2. 2.
  3. 3.
  4. 4.
    Groombridge B, Jenkins MD (2002) World atlas of biodiversity. University of California Press, BerkeleyGoogle Scholar
  5. 5.
    Whittaker RH (1959) On the broad classification of organisms. Quart Rev Biol 34:21–26Google Scholar
  6. 6.
    Woese C, Fox G (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090PubMedGoogle Scholar
  7. 7.
    Global Biodiversity Information Facility (2009) Accessed 10 Nov 2009
  8. 8.
    Bisby FA, Roskov YR, Orrell TM et al (eds) (2009) Species 2000 and ITIS catalogue of life. Accessed 10 Nov 2009
  9. 9.
    2009 Annual checklist. Accessed 10 Nov 2009
  10. 10.
    Gordon DP (2009) Towards a management hierarchy (classification) for the catalogue of life: draft discussion document. In: Bisby FA, Roskov YR, Orrell TM et al (eds) Species 2000 and ITIS catalogue of life: 2009 annual checklist. CD-ROM. Species 2000, ReadingGoogle Scholar
  11. 11.
  12. 12.
    Hawksworth DL, Kalin-Arroyo MT (1995) Magnitude and distribution of biodiversity. In: Heywood V (ed) Global biodiversity assessment. Cambridge University Press, CambridgeGoogle Scholar
  13. 13.
    Chapman AD (2009) Numbers of living species in Australia and the World, 2nd edn. Australian Biological Resources Study, Canberra. ISBN (printed): 978 0 642 56860 l. ISBN (online): 978 0 642568618. Accessed 10 Nov 2009
  14. 14.
    May RM (1998) How many species are there on earth? Science 241:1441–1449Google Scholar
  15. 15.
    Tangley L (1997) How many species are there? US News and World Report Aug 18, 1997. Accessed 10 Nov 2009
  16. 16.
    SMEBD (2009) The world register of marine species. Accessed 17 Jan 2010
  17. 17.
    Bouchet P (2006) The magnitude of marine biodiversity. In: Duarte CM (ed) The exploration of marine biodiversity. Scientific and technological challenges. Fundacion BBVA, BilbaoGoogle Scholar
  18. 18.
    Sertürner F (1805) Journal der Pharmacie fuer Aerzte und Apotheker 13:229–243Google Scholar
  19. 19.
    Sertürner F (1817) Ueber das Morphium, eine neue salzfähige Grundlage, und die Mekonsäure, als Hauptbestandtheile des Opiums. Ann Phys 55:56–89Google Scholar
  20. 20.
    der Marderosian AJ (1969) Marine pharmaceuticals. Pharm Sci 58:1–33Google Scholar
  21. 21.
    Bergmann W, Feeney RJ (1950) Isolation of a new thymine pentoside from sponges. J Am Chem Soc 72:2809–2810Google Scholar
  22. 22.
    Bergmann W, Feeney RJ (1951) Contributions to the study of marine products XXXII. The nucleosides of sponges. I. J Org Chem 16:981–987Google Scholar
  23. 23.
    Bergmann W, Burke DC (1955) Contributions to the study of marine products XXXIX. The nucleosides of sponges. III. Spongothymidine and spongouridine. J Org Chem 20:1501–1507Google Scholar
  24. 24.
    Bergmann W, Burke DC (1956) Contributions to the study of marine products XL. The nucleosides of sponges. IV. Spongosine. J Org Chem 21:226–228Google Scholar
  25. 25.
    Bergmann W, Watkins JC, Stempien MF et al (1957) Contributions to the study of marine products. XLV. Sponge nucleic acids. J Org Chem 22:1308–1313Google Scholar
  26. 26.
    Bergmann W, Johnson TB (1933) The chemistry of marine animals I. The sponge Microciona pralifera. Z Physiol Chem 222:220–226Google Scholar
  27. 27.
    Landowne RA, Bergmann W (1961) Contributions to the study of marine products L. Phospholipides of sponges. J Org Chem 26:1256–1261Google Scholar
  28. 28.
    Friess SL, Standaert FG, Whitcomb ER et al (1959) Some pharmacologic properties of holothurin, an active neurotoxin from the sea cucumber. J Pharm Exp Ther 126:323–329Google Scholar
  29. 29.
    Jakowska S, Nigrelli RF (1960) Antimicrobial substances from sponges. Ann NY Acad Sci 90:913–916PubMedGoogle Scholar
  30. 30.
    Burkholder PR, Burkholder LM (1956) Microbiological assay of vitamin B12 in marine solids. Science 123:1071–1073PubMedGoogle Scholar
  31. 31.
    Sharma GM, Burkholder PR (1967) Antimicrobial substances of sponges. I. Isolation, purification, and properties of a new bromine-containing anti-bacterial substance. J Antibiot Ser A 20:200–203Google Scholar
  32. 32.
    Ciereszko LS (1962) Chemistry of coelenterates III. Occurrence of antimicrobial terpenoid compounds in the zooxanthellae of alcyonarians. Trans NY Acad Sci 24:502–503Google Scholar
  33. 33.
    Nigrelli RF, Stempien MF Jr, Ruggieri GD et al (1967) Substances of potential biomedical importance from marine organisms. Fed Proc 26:1197–1205PubMedGoogle Scholar
  34. 34.
    Goto T, Kishi Y, Takahashi S et al (1965) Tetrodotoxin. Tetrahedron 21:2059–2088PubMedGoogle Scholar
  35. 35.
    Moore RE, Scheuer PJ (1971) Palytoxin: new marine toxin from a coelenterate. Science 172:495–498PubMedGoogle Scholar
  36. 36.
    Scheuer PJ (1977) Marine toxins. Acc Chem Res 10:33–39Google Scholar
  37. 37.
    Moore RE, Bartolini G (1981) Structure of palytoxin. J Am Chem Soc 103:2491–2494Google Scholar
  38. 38.
    Moore RE, Bartolini G, Barchi J et al (1982) Absolute stereochemistry of palytoxin. J Am Chem Soc 104:3776–3779Google Scholar
  39. 39.
    Pettit GR, Day JF, Hartwell JL et al (1970) Antineoplastic components of marine animals. Nature 227:962–963PubMedGoogle Scholar
  40. 40.
    Rinehart KL Jr, Shaw PD, Shield LS et al (1981) Marine natural products as sources of antiviral, antimicrobial, and antineoplastic agents. Pure Appl Chem 53:795–817Google Scholar
  41. 41.
    Faulkner DJ (2000) Highlights of marine natural products chemistry (1972–1999). Nat Prod Rep 17:1–6PubMedGoogle Scholar
  42. 42.
    Blunt JW, Copp BR, Hu W-P et al (2009) Marine natural products. Nat Prod Rep 26:170–244PubMedGoogle Scholar
  43. 43.
    Blunt JW, Copp BR, Munro MHG et al (2010) Marine natural products. Nat Prod Rep 27:165–237Google Scholar
  44. 44.
    Blunt JW, Munro MHG (eds) (2008) Dictionary of marine natural products. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  45. 45.
    Kornprobst J-M (2005) Substances Naturelles d’Origine Marine. Lavoisier, ParisGoogle Scholar
  46. 46.
    DeLong EF (1998) Everything in moderation: archaea as ‘non-extremophiles’. Curr Opin Genet Dev 8:649–654PubMedGoogle Scholar
  47. 47.
    Lepage SP, Sneath PHA, Lessel EF et al (1992) International code of nomenclature of bacteria, 1990 revision, bacteriological code. American Society for Microbiology, Washington, DCGoogle Scholar
  48. 48.
    Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538PubMedGoogle Scholar
  49. 49.
    Garrity GM et al (ed in chief) (2001) Bergey’s manual of systematic bacteriology, vols 1–2. De Vos P et al (ed in chief) (2009) Bergey’s manual of systematic bacteriology, vol 3. Bergey’s Manual Trust, Springer, New YorkGoogle Scholar
  50. 50.
    Austin B (2002) Novel pharmaceutical compounds from marine bacteria. Rec Adv Mar Biotech 6:1–28Google Scholar
  51. 51.
    König GM, Kehraus S, Seibert SF et al (2006) Natural products from marine organisms and their associated microbes. Chembiochem 7:229–238PubMedGoogle Scholar
  52. 52.
    Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673PubMedGoogle Scholar
  53. 53.
    Helmke E, Weyland H (1984) Rhodococcus marinonascens sp. nov., an actinomycete from the sea. Int J Syst Bacteriol 34:127–138Google Scholar
  54. 54.
    Han SK, Nedashkovzkaya OI, Mikhailov VV et al (2003) Salinibacterium amurkyense gen. nov., sp. nov., a novel genus of the family Microbacteriaceae from the marine environment. Int J Syst Evol Microbiol 53:2061–2066PubMedGoogle Scholar
  55. 55.
    Yi H, Schumann P, Sohn K et al (2004) Serinicoccus marinus gen. nov., sp. nov., a novel actinomycete with L-ornithine and L-serine in the peptidoglycan. Int J Syst Evol Microbiol 54:1585–1589PubMedGoogle Scholar
  56. 56.
    Maldonado LA, Fenical W, Jensen PR et al (2005) Salinispora gen nov., a home for obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Sys Evol Microbiol 55:1759–1766Google Scholar
  57. 57.
    Paul GK, Matsumori N, Konoki K et al (1997) Chemical structures of amphidinols 5 and 6 isolated from marine dinoflagellate Amphidinium klebsii and their cholesterol-dependent membrane disruption. J Mar Biotech 5:124?128Google Scholar
  58. 58.
    Oishi T, Kanemoto M, Swasono R et al (2008) Combinatorial synthesis of the 1,5-polyol system based on cross metathesis: structure revision of amphidinol 3. Org Lett 10:5203–5206PubMedGoogle Scholar
  59. 59.
    Lin Y-Y, Risk M, Ray SM et al (1981) Isolation and structure of brevetoxin B from the ‘Red Tide’ dinoflagellate Ptychodiscus brevis (Gymnodium breve). J Am Chem Soc 103:6773–6775Google Scholar
  60. 60.
    Shimizu Y, Bando H, Chou H-N et al (1986) Absolute configuration of brevetoxins. J Chem Soc Chem Commun 1656–1658Google Scholar
  61. 61.
    Tachibana K, Scheuer PJ, Tsukitani Y et al (1981) Okadaic acid; a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc 103:2469–2471Google Scholar
  62. 62.
    Kobayashi J, Ishibashi M, Nakamura H et al (1986) Amphidinolide-A; an antineoplastic macrolide from the marine dinoflagellate Amphidinium sp. Tetrahedron Lett 27:5755–5758Google Scholar
  63. 63.
    Trost BM, Harrington PE (2004) Structure elucidation of (+)-amphidinolide A by total synthesis and NMR chemical shift analysis. J Am Chem Soc 126:5028–5029PubMedGoogle Scholar
  64. 64.
    Uemura D, Chou T, Haino T et al (1995) Pinnatoxin A: a toxic amphoteric macrocycle from the Okinawan bivalve Pinna muricata. J Am Chem Soc 117:1155–1156Google Scholar
  65. 65.
    Chou T, Kamo O, Uemura D (1996) Relative stereochemistry of pinnatoxin A, a potent shellfish poison from Pinna muricata. Tetrahedron Lett 37:4023–4026Google Scholar
  66. 66.
    Schantz EJ, Ghazarossian VE, Schnoes HK et al (1975) The structure of saxitoxin. J Am Chem Soc 97:1238–1239PubMedGoogle Scholar
  67. 67.
    Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? Biosystems 14:461–481PubMedGoogle Scholar
  68. 68.
    Kitagawa I, Hamamoto Y, Kobayashi M (1979) Sulfonoglycolipid from the sea urchin Anthocidaris crassispina A. Agassiz. Chem Pharm Bull 27:1394–1397PubMedGoogle Scholar
  69. 69.
    Igarashi T, Satake M, Yasumoto T (1999) Structures and partial stereochemical assignments for prymnesin-1 and prymnesin-2: potent hemolytic and ichthyotoxic glycosides isolated from the red tide alga Prymnesium parvum. J Am Chem Soc 121:8499–8511Google Scholar
  70. 70.
    Walter JA, Falk M, Wright JLC (1994) Chemistry of the shellfish toxin domoic acid: characterization of related compounds. Can J Chem 72:430–436Google Scholar
  71. 71.
    Amico V, Oriente G, Piattelli M et al (1978) Caulerpenyne; an unusual sesquiterpenoid from the green alga Caulerpa prolifera. Tetrahedron Lett 3593–3596Google Scholar
  72. 72.
    Paul VJ, Fenical W (1984) Novel bioactive diterpenoid metabolites from tropical marine algae of genus Halimeda (Chlorophyta). Tetrahedron 40:3053–3062Google Scholar
  73. 73.
    Hamann MT, Scheuer PJ (1993) Kahalalide F: a bioactive depsipeptide from the sacoglossan mollusk Elysia rufescens and the green alga Bryopsis sp. J Am Chem Soc 115:5825–5826Google Scholar
  74. 74.
    Rochfort SJ, Capon RJ (1996) Parguerenes revisited: new brominated diterpenes from the southern Australian marine red alga Laurencia filiformis. Aust J Chem 49:19–26Google Scholar
  75. 75.
    Blunt JW, Hartshorn MP, McLennan TJ et al (1978) Thyrsiferol; a squalene-derived metabolite of Laurencia thyrsifera. Tetrahedron Lett 19:69–72Google Scholar
  76. 76.
    Irie T, Suzuki M, Masamune T (1965) Laurencin; a constituent from Laurencia species. Tetrahedron Lett 1091–1099Google Scholar
  77. 77.
    Forbes Cameron A, Cheung KK, Ferguson G et al (1969) Laurencia natural products: crystal structure and absolute stereochemistry of laurencin. J Chem Soc B 559–564Google Scholar
  78. 78.
    King TJ, Imre S, Oztunc A et al (1979) Obtusenyne, a new acetylenic nine-membered cyclic ether from Laurencia obtusa. Tetrahedron Lett 1453–1454Google Scholar
  79. 79.
    Ackermann D (1953) The occurrence of homarine, trigonelline, and a new base, anemonine, in the sea anemone Anemonia sulcata. Hoppe Seyler’s Z Physiol Chem 295:1–9PubMedGoogle Scholar
  80. 80.
    McClintock JB, Baker BJ, Hamann MT et al (1994) Homarine as a feeding deterrent in common shallow water Antarctic lamellarian gastropod Marseniopsis mollis: rare example of chemical defense in marine prosobranch. J Chem Ecol 20:2539–2549Google Scholar
  81. 81.
    Nitta I, Watase H, Tomiie Y (1958) Structure of kainic acid and its isomer, allokainic acid. Nature 181:761–762PubMedGoogle Scholar
  82. 82.
    Wratten SJ, Faulkner DJ (1976) Cyclic polysulfides from the red alga Chondria californica. J Org Chem 41:2465–2467PubMedGoogle Scholar
  83. 83.
    Kirk PM, Cannon PF, David JC et al (eds) (2001) Dictionary of the fungi, 9th edn. CABI, WallingfordGoogle Scholar
  84. 84.
    Jensen PR, Fenical W (2002) Secondary metabolites from marine fungi. In: Hyde KD (ed) Fungi in marine environments. Fungal Diversity Press, Hong KongGoogle Scholar
  85. 85.
    Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163PubMedGoogle Scholar
  86. 86.
    Zuccaro A, Schoch CL, Spatafora JW et al (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Micro 74:931–941Google Scholar
  87. 87.
    Belofsky GN, Jensen PR, Renner MK et al (1998) New cytotoxic sesquiterpenoid nitrobenzoyl esters from a marine isolate of the fungus Aspergillus versicolor. Tetrahedron 54:1715–1724Google Scholar
  88. 88.
    Watanabe Y, Fusetani N (eds) (1998) Sponge sciences: multidisciplinary perspectives. Springer, TokyoGoogle Scholar
  89. 89.
    Hooper JNA, van Soest RWM (eds) (2002) Systema Porifera: a guide to the classification of sponges. Kluwer/Plenum, New YorkGoogle Scholar
  90. 90.
    Faulkner DJ, Unson MD, Bewley CA (1994) The chemistry of some sponges and their symbionts. Pure Appl Chem 66:1983–1990Google Scholar
  91. 91.
    Fattorusso E, Magnoni A (1997) Marine glycolipids. Prog Chem Org Nat Prod 72:215–301Google Scholar
  92. 92.
    Costantino V, Fattorusso E, Mangoni A (1994) The stereochemistry of crasserides. J Nat Prod 57:1726–1730Google Scholar
  93. 93.
    Anderluh G, Macek P (2002) Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 40:111–124PubMedGoogle Scholar
  94. 94.
    D'Ambrosio M, Guerriero A, Pietra F (1988) Isolation from coral Sarcodictyon roseum of sarcodictyin C, D, E, and F, novel diterpenoidic alcohols esterified by (E)- or (Z)-N(1)-methylurocanic acid. Helv Chim Acta 71:964–976Google Scholar
  95. 95.
    Schwartz RE, Yunker MB, Scheuer PJ et al (1978) Constituents of bathyal marine organisms: a new zoanthoxanthin from a coelenterate. Tetrahedron Lett 2235–2238Google Scholar
  96. 96.
    Cha JK, Christ WJ, Finan JM et al (1982) Stereochemistry of palytoxin. 4. Complete structure. J Am Chem Soc 104:7369–7371Google Scholar
  97. 97.
    Kazlauskas R, Murphy PT, Quinn RJ et al (1977) Aplysinopsin, a tryptophan derivative from a sponge (Aplysinopsis or Thorecta genus). Tetrahedron Lett 61–64Google Scholar
  98. 98.
    Ballantine JA, Psaila AF, Pelter A et al (1980) The structure of bonellin and its derivatives. Unique physiologically active chlorins from the marine echurian Bonellia viridis. J Chem Soc (Perkin) 1:1972–1999Google Scholar
  99. 99.
    Okaichi T, Hashimoto Y (1962) The structure of nereistoxin. Agric Biol Chem 26:224–227Google Scholar
  100. 100.
    Pettit GR, Herald CL, Doubek DL et al (1982) Isolation and structure of bryostatin 1. J Am Chem Soc 104:6846–6848Google Scholar
  101. 101.
    Sudek S, Lopanik NB, Waggoner LE et al (2007) Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J Nat Prod 70:67–74PubMedGoogle Scholar
  102. 102.
    Carle JS, Christophersen C (1979) Bromo-substituted physostigmine alkaloids from a marine bryozoa Flustra foliacea. J Am Chem Soc 101:4012–4013Google Scholar
  103. 103.
    Rahbaek L, Anthoni U, Christophersen C et al (1996) Marine alkaloids. 18. Securamines and securines, halogenated indole-imidazole alkaloids from the marine bryozoan Securiflustra securifrons. J Org Chem 61:887–889Google Scholar
  104. 104.
    Anthoni U, Chevolot L, Larsen C et al (1987) Marine alkaloids. 12. Chartellines, halogenated β-lactam alkaloids from the marine bryozoan Chartella papyracea. J Org Chem 52:4709–4712Google Scholar
  105. 105.
    Anthoni U, Bock K, Chevolot L et al (1987) Marine alkaloids. 13. Chartellamide A and B, halogenated β-lactam indole-imidazole alkaloids from the marine bryozoan Chartella papyracea. J Org Chem 52:5638–5639Google Scholar
  106. 106.
    Cimino G, Gavagnin M (eds) (2006) Molluscs: from chemico-ecological study to biotechnological application. Progress in molecular and subcellular biology, vol 43. Springer, BerlinGoogle Scholar
  107. 107.
    Cimino G, Fontana A, Gavagnin M (1999) Marine opisthobranch molluscs: chemistry and ecology in sacoglossans and dorids. Curr Org Chem 3:327–372Google Scholar
  108. 108.
    Ito S, Nardi G, Palumbo A et al (1979) Isolation and characterization of adenochrome, a unique iron(III)-binding peptide from Octopus vulgaris. J Chem Soc (Perkin) 1:2617–2623Google Scholar
  109. 109.
    Spinella A, Zubia E, Martinez E et al (1997) Structure and stereochemistry of aplyolides A-E, lactonized dihydroxy fatty acids from the skin of the marine mollusk Aplysia depilans. J Org Chem 62:5471–5475Google Scholar
  110. 110.
    Kato Y, Scheuer PJ (1974) Aplysiatoxin and debromoaplysiatoxin; constituents of the marine mollusk Stylocheilus longicauda. J Am Chem Soc 96:2245–2246PubMedGoogle Scholar
  111. 111.
    Moore RE, Blackman AJ, Cheuk CE et al (1984) Absolute stereochemistries of the alpysiatoxins and oscillatoxin A. J Org Chem 49:2484–2489Google Scholar
  112. 112.
    Suenaga K, Kigoshi H, Yamada K (1996) Auripyrones A and B, cytotoxic polypropionates from the sea hare Dolabella auricularia: isolation and structures. Tetrahedron Lett 37:5151–5154Google Scholar
  113. 113.
    Andersen RJ, Faulkner DJ, He CH et al (1985) Metabolites of the marine prosobranch mollusk Lamellaria sp. J Am Chem Soc 107:5492–5495Google Scholar
  114. 114.
    Olivera BM, Gray WR, Zeikus R et al (1985) Peptide neurotoxins from fish-hunting cone snails. Science 230:1338–1343PubMedGoogle Scholar
  115. 115.
    Choi MC, Hsieh DPH, Lam PKS et al (2003) Field depuration and biotransformation of paralytic shellfish toxins in scallop Chlamys nobilis and green-lipped mussel Perna viridis. Mar Biol 143:927–934Google Scholar
  116. 116.
    Edmonds JS, Francesconi KA, Healy PC et al (1982) Isolation and crystal structure of an arsenic-containing sugar sulfate from the kidney of the giant clam, Tridacna maxima. X-ray crystal structure of (2S)-3-[5-deoxy-5-(dimethylarsinoyl)-β-D-ribofuranosyloxy]-2-hydroxypropyl hydrogen sulfate. J Chem Soc (Perkin) 1:2989–2993Google Scholar
  117. 117.
    Stonik VA, Kalinin VI, Avilov SA (1999) Toxins from sea cucumbers (holothuroids): chemical structures, properties, taxonomic distribution, biosynthesis and evolution. J Nat Toxins 8:235–248PubMedGoogle Scholar
  118. 118.
    Findlay JA, Yayli N, Radics L (1992) Novel sulfated oligosaccharides from the sea cucumber Cucumaria frondosa. J Nat Prod 55:93–101PubMedGoogle Scholar
  119. 119.
    De Riccardis F, Iorizzi M, Minale L et al (1991) The gymnochromes: novel marine brominated pheanthroperylenequinone pigments from the stalked crinoid Gymnocrinus richeri. J Org Chem 56:6781–6787Google Scholar
  120. 120.
    Pettit GR, Inoue M, Kamano Y et al (1988) Isolation and structure of the powerful cell growth inhibitor cephalostatin 1. J Am Chem Soc 110:2006–2007Google Scholar
  121. 121.
    Davidson BS (1993) Ascidians: producers of amino acid-derived metabolites. Chem Rev 93:1771–1791Google Scholar
  122. 122.
    Riccio R, Kinnel RB, Bifulco G et al (1996) Kakelokelose, a sulfated mannose polysaccharide with anti-HIV activity from the Pacific tunicate Didemnum molle. Tetrahedron Lett 37:1979–1982Google Scholar
  123. 123.
    Kiyota H, Dixon DJ, Luscombe CK et al (2002) Synthesis, structure revision, and absolute configuration of (+)-didemniserinolipid B, a serinol marine natural product from a tunicate Didemnum sp. Org Lett 4:3223–3226PubMedGoogle Scholar
  124. 124.
    Fukuzawa S, Matsunaga S, Fusetani N (1994) Ritterazine A, a highly cytotoxic dimeric steroidal alkaloid, from the tunicate Ritterella tokioka. J Org Chem 59:6164–6166Google Scholar
  125. 125.
    Ireland CM, Durso AR, Newman RA et al (1982) Antineoplastic cyclic peptides from the tunicate Lissoclinum patella. J Org Chem 47:1807–1811Google Scholar
  126. 126.
    Hamada Y, Shibata M, Shioiri T (1985) New methods and reagents in organic synthesis. 56. Total syntheses of patellamides B and C, cytotoxic cyclic peptides from a tunicate. 2. Their real structures have been determined by their syntheses. Tetrahedron Lett 26:5159–5162Google Scholar
  127. 127.
    Rinehart KL, Kobayashi J, Harbour GC et al (1981) Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Carribean tunicate. J Am Chem Soc 103:1857–1859Google Scholar
  128. 128.
    Rinehart KL, Lithgow-Bertelloni AM (1991) Dehydrodidemnin B. WO9104985 (A1)Google Scholar
  129. 129.
    Krishnaiah P, Reddy VLN, Venkataramana G et al (2004) New lamellarin alkaloids from the Indian ascidian Didemnum obscurum and their antioxidant properties. J Nat Prod 67:1168–1171PubMedGoogle Scholar
  130. 130.
    Moore KS, Wehrli S, Roder H et al (1993) Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci USA 90:1354–1358PubMedGoogle Scholar
  131. 131.
    Nakamura M, Yasumoto T (1985) Tetrodotoxin derivatives in puffer fish. Toxicon 23:271–276PubMedGoogle Scholar
  132. 132.
  133. 133.
    Suckling CJ (1991) Chemical approaches to the discovery of new drugs. Sci Prog 75:323–359PubMedGoogle Scholar
  134. 134.
    Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17:215–234PubMedGoogle Scholar
  135. 135.
    Freudenthal HD (1968) Transactions of the drugs from the sea symposium, University of Rhode Island, 27–29 Aug 1967. Marine Technology Society, Washington, DC, pp 1–297Google Scholar
  136. 136.
    Cragg GM, Newman DJ, Yang SS (2006) Natural product extracts of plant and marine origin having antileukemia potential. The NCI experience. J Nat Prod 69:488–498PubMedGoogle Scholar
  137. 137.
    Faulkner DJ (1977) Interesting aspects of marine natural products chemistry. Tetrahedron 33:1421–1443Google Scholar
  138. 138.
    Lipinski CA, Lombardo F, Dominy BW et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 23:3–25Google Scholar
  139. 139. Accessed 20 Nov 2009
  140. 140.
  141. 141.
    Dalisay DS, Molinski TF (2009) NMR quantitation of natural products at the nanomole scale. J Nat Prod 72:739–744PubMedGoogle Scholar
  142. 142.
    Lang G, Mayhudin NA, Mitova MI et al (2008) Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. J Nat Prod 71:1595–1599PubMedGoogle Scholar
  143. 143.
    Wright AE, Forleo DA, Gunawardana GP et al (1990) Antitumor tetrahydroisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinata. J Org Chem 55:4508–4512Google Scholar
  144. 144.
    Rinehart KL, Holt TG, Fregeau NL et al (1990) Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J Org Chem 55:4512–4515Google Scholar
  145. 145.
    Molinski TF, Dalisay DS, Lievens SL et al (2009) Drug development from marine natural products. Nat Rev Drug Disc 8:69–85Google Scholar
  146. 146.
    Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238PubMedGoogle Scholar
  147. 147.
    Cragg GM, Newman DJ (2009) Nature: a vital source of leads for anticancer drug development. Phyt Rev 8:313–331Google Scholar
  148. 148.
    Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043PubMedGoogle Scholar
  149. 149.
    Kwon HC, Kauffman CA, Jensen PR et al (2006) Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus Marinispora. J Am Chem Soc 128:1622–1632PubMedGoogle Scholar
  150. 150.
    Williams PG, Asolkar RN, Kondratyuk T et al (2007) Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola. J Nat Prod 70:83–88PubMedGoogle Scholar
  151. 151.
    Feling RH, Buchanan GO, Mincer TJ et al (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed 42:355–358Google Scholar
  152. 152.
    Perez Baz J, Canedo LM, Fernandez Puentes JL et al (1997) Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora. II. Physico-chemical properties and structure determination. J Antibiot 50:738–741PubMedGoogle Scholar
  153. 153.
    Kobayashi J, Cheng J, Nakamura H et al (1988) Ascididemin, a novel pentacyclic aromatic alkaloid with antileukemic activity from Okinawan tunicate Didemnum sp. Tetrahedron Lett 29:1177–1180Google Scholar
  154. 154.
    Lindquist N, Fenical W, Van Duyne GD et al (1991) Isolation and structure determination of diazonamides A and B, unusual cytotoxic metabolites from the marine ascidian Diazona chinensis. J Am Chem Soc 113:2303–2304Google Scholar
  155. 155.
    Franco LH, Joffe EBD, Puricelli L et al (1998) Indole alkaloids from the tunicate Aplidium meridianum. J Nat Prod 61:1130–1132PubMedGoogle Scholar
  156. 156.
    Fernandez AF, He H-Y, McDonald LA et al (1998) Structural studies of marine peptides. Pure Appl Chem 70:2130–2138Google Scholar
  157. 157.
    Moore KS, Wehrli S, Roder H et al (1993) Squalamine: an aminosterol antibiotic from the shark. Proc Nat Acad Sci USA 90:1354–1358PubMedGoogle Scholar
  158. 158.
    Lindel T, Jensen PR, Fenical W et al (1997) Eleutherobin, a new cytotoxin that mimics paclitaxel (taxol) by stabilizing microtubules. J Am Chem Soc 119:8744–8755Google Scholar
  159. 159.
    Look SA, Fenical W, Matsumoto GK et al (1986) The pseudopterosins: a new class of antiinflammatory and analgesic diterpene pentosides from the marine sea whip Pseudopterogorgia elisabethae (Octocorallia). J Org Chem 51:5140–5145Google Scholar
  160. 160.
    Matthew S, Schupp PJ, Luesch H (2008) Apratoxin E, a cytotoxic peptolide from a Guamanian collection of the marine cyanobacterium Lyngbya bouillonii. J Nat Prod 71:1113–1116PubMedGoogle Scholar
  161. 161.
    Medina RA, Goeger DE, Hills P et al (2008) Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J Am Chem Soc 130:6324–6325PubMedGoogle Scholar
  162. 162.
    Schwartz RE, Hirsch CF, Sesin DF et al (1990) Pharmaceuticals from cultured algae. J Indust Microbiol 5:113–124Google Scholar
  163. 163.
    Trimurtulu G, Ohtani I, Patterson GML et al (1994) Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green-alga Nostoc sp strain GSV-224. J Am Chem Soc 116:4729–4737Google Scholar
  164. 164.
    Nagle DG, Geralds RS, Yoo HD et al (1995) Absolute configuration of curacin A, a novel antimitotic agent from the tropical marine cyanobacterium Lyngbya majuscula. Tetrahedron Lett 36:1189–1192Google Scholar
  165. 165.
    Taori K, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130:1806PubMedGoogle Scholar
  166. 166.
    Harrigan GG, Luesch H, Yoshida WY et al (1998) Symplostatin 1: a dolastatin 10 analog from the marine cyanobacterium Symploca hydnoides. J Nat Prod 61:1075–1077PubMedGoogle Scholar
  167. 167.
    Pettit GR, Kamano Y, Herald CL et al (1987) The isolation and structure of a remarkable marine animal antineoplastic constituent – dolastatin 10. J Am Chem Soc 109:6883–6885Google Scholar
  168. 168.
    Bloxam WP, Perkin AG (1910) Indirubin. J Chem Soc 1460–1475Google Scholar
  169. 169.
    Rinehart KL, Fregeau NL, Warwick RA et al (1999) Spisulosine compounds having antitumor activity. PCT Int Appl WO 9952521 A1 19991021 73 ppGoogle Scholar
  170. 170.
    Quiñoà E, Adamczeski M, Crews P et al (1986) Bengamides; heterocyclic anthelminthics from a Jaspidae marine sponge. J Org Chem 51:4494–4497Google Scholar
  171. 171.
    Adamczeski M, Quiñoà E, Crews P (1990) Novel sponge-derived amino acids. 11. The entire absolute stereochemistry of the bengamides. J Org Chem 55:240–242Google Scholar
  172. 172.
    Warabi K, Matsunaga S, van Soest RWM et al (2003) Dictyodendrins A–E, the first telomerase-inhibitory marine natural products from the sponge Dictyodendrilla verongiformis. J Org Chem 68:2765–2770PubMedGoogle Scholar
  173. 173.
    Pettit GR, Cichacz ZA, Gao F et al (1994) Isolation and structure of the cancer cell growth inhibitor dictyostatin 1. J Chem Soc Chem Commun 1111–1112Google Scholar
  174. 174.
    Gunasekera SP, Gunasekera M, Longley RE et al (1990) Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. J Org Chem 55:4912–4915Google Scholar
  175. 175.
    Gunasekera SP, Gunasekera M, Longley RE et al (1991) Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. J Org Chem 56:1346Google Scholar
  176. 176.
    Gunasekera SP, McCarthy PJ, Kelly-Borges M et al (1996) Dysidiolide: a novel protein phosphatase inhibitor from the Caribbean sponge Dysidea etheria de Laubenfels. J Am Chem Soc 118:8759–8760Google Scholar
  177. 177.
    Hirata Y, Uemura D (1986) Halichondrins – antitumor polyether macrolides from a marine sponge. Pure App Chem 58:701–710Google Scholar
  178. 178.
    Talpir R, Benayahu Y, Kashman Y et al (1994) Hemiasterlin and geodiamolide TA: two new cytotoxic peptides from the marine sponge Hemiasterella minor (Kirkpatrick). Tetrahedron Lett 35:4453–4456Google Scholar
  179. 179.
    Zabriskie TM, Klocke JA, Ireland CM et al (1986) Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. J Am Chem Soc 108:3123–3124Google Scholar
  180. 180.
    Crews P, Manes LV, Boehler M (1986) Jasplakinolide; a cyclodepsipeptide from the marine sponge; Jaspis sp. Tetrahedron Lett 27:2797–2800Google Scholar
  181. 181.
    Corley DG, Herb R, Moore RE et al (1988) Laulimalides: new cytotoxic macrolides from marine sponge (Hyatella sp) and nudibranch predator (Chromodoris lochi). J Org Chem 53:3644–3646Google Scholar
  182. 182.
    Shigemori H, Madono T, Sasaki T et al (1994) Nakijiquinones A and B, new antifungal sesquiterpenoid quinones with an amino acid residue from an Okinawan marine sponge. Tetrahedron 50:8347–8354Google Scholar
  183. 183.
    West LM, Northcote PT, Battershill CN (2000) Peloruside A: a potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 65:445–449PubMedGoogle Scholar
  184. 184.
    Searle PA, Molinski TF (1995) Phorboxazoles A and B: potent cytostatic macrolides from marine sponge Phorbas species. J Am Chem Soc 117:8126–8131Google Scholar
  185. 185.
    Erickson KL, Beutler JA, Cardellina JH et al (1997) Salicylihalamides A and B, novel cytotoxic macrolides from the marine sponge Haliclona sp. J Org Chem 62:8188–8192PubMedGoogle Scholar
  186. 186.
    Erickson KL, Beutler JA, Cardellina JH et al (2001) Salicylihalamides A and B, novel cytotoxic macrolides from the marine sponge Haliclona sp. J Org Chem 66:1532–1532Google Scholar
  187. 187.
    Trimurtulu G, Faulkner DJ, Perry NB et al (1994) Alkaloids from the Antarctic sponge Kirkpatrickia varialosa Part 2: Variolin A and N(3’)-methyl tetrahydrovariolin B. Tetrahedron 50:3993–4000Google Scholar
  188. 188.
    Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52:716–722PubMedGoogle Scholar
  189. 189.
    Andrianasolo EH, Gross H, Goeger D et al (2005) Isolation of swinholide A and related glycosylated derivatives from two field collections of marine cyanobacteria. Org Lett 7:1375–1378PubMedGoogle Scholar
  190. 190.
    Schmidt EW, Nelson JT, Rasko DA et al (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci USA 102:7315–7320PubMedGoogle Scholar
  191. 191.
    Luesch H, Moore RE, Paul VJ et al (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:907–910PubMedGoogle Scholar
  192. 192.
    Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Micro Mol Biol Rev 64:573–606Google Scholar
  193. 193.
    Grassle JF, Maciolek NJ (1992) Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am Nat 139:313–341Google Scholar
  194. 194.
    Feling RH, Buchanan GO, Mincer TJ et al (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinispora. Angew Chem Int Ed 42:355–357Google Scholar
  195. 195.
    Naumann K (1999) Influence of chlorine substituents on biological activity of chemicals. J Prakt Chem 341:417–435Google Scholar
  196. 196.
    Macherla VR, Mitchell SS, Manam RR et al (2005) Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J Med Chem 48:3684–3687PubMedGoogle Scholar
  197. 197.
    Williams PG, Buchanan GO, Feling RH et al (2005) New cytotoxic salinosporamides from the marine actinomycete Salinispora tropica. J Org Chem 70:6196–6203PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CanterburyChristchurchNew Zealand
  2. 2.Dictionary of Natural Products, CRC Press/InformaLondonUK

Personalised recommendations