Skip to main content

Biogeochemistry of Sea Ice

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Synonyms

Land-fast ice; Pack ice

Definition

Salinity: The sum of all dissolved salts in grams per kilogram of seawater

Primary production: Photosynthetic carbon fixation per unit area, per unit of time.

Autotrophy: The ability to utilize inorganic carbon (usually CO2) as the sole source of carbon for organic synthesis, based on energy from light (photoautotrophic) or from oxidation of inorganic compounds (chemoautotrophic).

Heterotrophy: The ability of an organism to obtain carbon for organic synthesis by metabolizing organic materials.

Psychrophilic: Describing an organism that lives and grows optimally at relatively low temperatures, usually below 15°C, and cannot grow above 20°C. Psychrophiles consist mainly of bacteria, algae, fungi, and protozoans; extreme psychrophiles can grow at subzero temperatures.

Introduction

Every autumn and winter, a fundamental transition occurs in the surface waters of the Arctic and Southern Oceans, and nonpolar seas such as the Baltic, Caspian, and...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-2642-2_639
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   549.99
Price excludes VAT (USA)
  • ISBN: 978-90-481-2642-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   699.99
Price excludes VAT (USA)
Biogeochemistry of Sea Ice, Figure 1
Biogeochemistry of Sea Ice, Figure 2
Biogeochemistry of Sea Ice, Figure 3
Biogeochemistry of Sea Ice, Figure 4

Bibliography

  • Arrigo, K., and Thomas, D. N., 2004. The importance of sea ice for the Southern Ocean ecosystem. Antarctic Science, 16, 471–486.

    Google Scholar 

  • Belt, S. T., Massé, G., Vare, L. L., Rowland, S. J., Poulin, M., Sicre, M.-A., Sampei, M., and Fortier, L., 2008. Distinctive 13C isotopic signature distinguishes a novel sea ice biomarker in Arctic sediments and sediment traps. Marine Chemistry, 112, 158–167.

    Google Scholar 

  • Brierley, A. S., and Thomas, D. N., 2002. On the ecology of Southern Ocean pack ice. Advances in Marine Biology, 43, 171–278.

    Google Scholar 

  • Curran, M. A. J., van Ommen, T. D., Morgan, V. I., Phillips, K. L., and Palmer, A. S., 2003. Ice core evidence for Antarctic sea ice decline since the 1950s. Science, 302, 1203–1206.

    Google Scholar 

  • Deming, J. W., 2002. Psycrophiles and polar regions. Current Opinion in Microbiology, 5, 301–309.

    Google Scholar 

  • Deming, J. W., and Eicken, H., 2007. Life in ice. In Sullivan, W. T., and Baross, J. A. (eds.), Planets and Life: The Emerging Science of Astrobiology. Cambridge: Cambridge University Press, pp. 292–312.

    Google Scholar 

  • Dieckmann, G. S., Nehrke, G., Papadimitriou, S., Gottlicher, J., Steininger, R., Kennedy, H., Wolf-Gladrow, D., and Thomas, D. N., 2008. Calcium carbonate as ikaite crystals in Antarctic sea ice. Geophysical Research Letters, 35, L08501, doi:10.1029/2008GL033540.

    Google Scholar 

  • Dixon, D., Mayewski, P. A., Kaspari, S., Kreutz, K., Hamilton, G., Maasch, K., Sneed, S. B., and Handley, M. J., 2005. A 200 year sulfate record from 16 Antarctic ice cores and associations with Southern Ocean sea-ice extent. Annals of Glaciology, 41, 155–166.

    Google Scholar 

  • Gleitz, M., and Thomas, D. N., 1993. Variation in phytoplankton standing stock, chemical composition and physiology during sea ice formation in the southeastern Weddell Sea, Antarctica. Journal of Experimental Marine Biology and Ecology, 173, 211–230.

    Google Scholar 

  • Gleitz, M., Bartsch, A., Dieckmann, G. S., and Eicken, H., 1998. Composition and succession of sea ice diatom assemblages in the Weddell Sea, Antarctica. In Lizotte, M. P., and Arrigo, K. R. (eds.), Antarctic Sea Ice Biological Processes, Interactions and Variability, American Geophysical Union, Washington D.C. Antarctic Research Series, Vol. 73, pp. 107–120.

    Google Scholar 

  • Krembs, C., and Deming, J. W., 2008. The role of exopolymers in microbial adaptation to sea ice. In Margesin, R., Schinner, F., Marx, J.-C., and Gerday, C. (eds.), Psychrophiles: From Biodiversity to Biotechnology. Berlin: Springer, pp. 247–264.

    Google Scholar 

  • Mock, T., and Thomas, D. N., 2005. Recent advances in sea ice microbiology. Environmental Microbiology, 7, 605–619.

    Google Scholar 

  • Mock, T., and Thomas, D. N., 2008. Microalgae in Polar regions: Linking functional genomics and physiology with environmental conditions. In Margesin, R., Schinner, F., Marx, J.-C., and Gerday, C. (eds.), Psychrophiles: From Biodiversity to Biotechnology. Berlin: Springer, pp. 285–312.

    Google Scholar 

  • Papadimitriou, S., Thomas, D. N., Kennedy, H., Hass, C., Kuosa, H., Krell, A., and Dieckmann, G. S., 2007. Biochemical composition of natural sea ice brines from the Weddell Sea during early austral summer. Limnology and Oceanography, 52, 1809–1823.

    Google Scholar 

  • Serreze, M. C., Holland, M. M., and Stroeve, J., 2007. Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 1533–1536.

    Google Scholar 

  • Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S., 2007. Environmental constraints on the production and removal of the chemically active gas dimethylsuphide (DMS) and implcations for ecosystem modelling. Biogeochemistry, 83, 245–275.

    Google Scholar 

  • Thomas, D. N., and Dieckmann, G. S., 2002. Antarctic sea ice - A habitat for extremophiles. Science, 295, 641–644.

    Google Scholar 

  • Thomas, D. N., and Dieckmann, G. S. (eds.), 2010. Sea Ice, 2nd edn. Oxford: Wiley-Blackwell.

    Google Scholar 

  • Trevena, A. J., and Jones, G. B., 2006. Dimethylsulphide and dimethylsulphonioproprionate in Antarctic sea ice and their release during sea ice melting. Marine Chemistry, 98, 210–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Thomas, D.N. (2011). Biogeochemistry of Sea Ice. In: Singh, V.P., Singh, P., Haritashya, U.K. (eds) Encyclopedia of Snow, Ice and Glaciers. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2642-2_639

Download citation