Skip to main content

LIDAR in Glaciology

  • Reference work entry
  • First Online:
Encyclopedia of Snow, Ice and Glaciers

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 342 Accesses

Synonyms

Laser altimetry; Laser radar (considered misleading); Laser swath mapping as used in Airborne Laser Swath Mapping (ALSM); Laser terrain mapping as used in Airborne Laser Terrain Mapping (ALTM)

Definition

LiDAR. Coined from “Light Detection And Ranging”

Glaciology. The study of glaciers

LASER. Coined from “Light Amplification by Stimulated Emission of Radiation”

Introduction

The study of the Earth’s glaciers and ice sheets is of tremendous importance as their fluctuation has consequences on sea level, river flow, ecosystem functioning, ocean circulation, and climate stability. Recent studies have shown that the Earth’s small glaciers are in measurable decline on account of secular atmospheric warming (Kaser et al., 2006; UNEP/WGMS, 2009), and whose environmental services (e.g., hydrological regulation) vary regionally – from short-term flow augmentation to long-term decline (Bonardi, 2008; Casassa et al., 2008; Sauchyn et al., 2008). There is considerable concern regarding the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Abdalati, W., and Krabill, W., 1999. Calculation of ice velocities in the Jakobshavn Isbrae area using airborne laser altimetry. Remote Sensing of Environment, 67, 194–204.

    Google Scholar 

  • Abdalati, W., Krabill, W., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas, R., Yungel, J., and Koerner, R., 2004. Elevation changes of ice caps in the Canadian Arctic Archipelago. Journal of Geophysical Research, 109, F04007, doi:10.1029/2003JF000045.

    Google Scholar 

  • Alley, R. B., Andrews, J. T., Clarke, G. K. C., Cuffey, K. M., Funder, S., Marshall, S. J., Mitrovica, J. X., Muhs, D. R., and Otto-Bleisner, B., 2009. Past extent and status of the Greenland ice sheet. In Past Climate Variability and Change in the Arctic and at High Latitudes. U.S. Climate Change Program and Subcommittee on Global Change Research. U.S. Geological Survey, Reston, VA, pp. 303.357.

    Google Scholar 

  • Arendt, A. A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. S., and Valentine, V. B., 2002. Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297, 382.

    Google Scholar 

  • Arnold, N. S., and Rees, W. G., 2003. Self-similarity in glacier surface characteristics. Journal of Glaciology, 49, 547–554.

    Google Scholar 

  • Arnold, N. S., Rees, W. G., Devereux, B. J., and Amable, G. S., 2006. Evaluating the potential of high-resolution airborne LiDAR data in glaciology. International Journal of Remote Sensing, 27(6), 1233–1251, doi:10.1080/01431160500353817.

    Google Scholar 

  • Bamber, J. L., Alley, R. B., and Joughin, I., 2007. Rapid response of modern day ice sheets to external forcing. Earth and Planetary Science Letters, 257, 1–13.

    Google Scholar 

  • Bonardi, L. (ed.), 2008. Mountain glaciers and climate changes in the last century. Terra Glacialis, Special Issue, 239 pp.

    Google Scholar 

  • Casassa, G., López, P., Pouyaud, B., and Escobar, F., 2008. Detection of changes in glacial run-off in alpine basins: examples from North America, the Alps, central Asia and the Andes. Hydrological Processes, 23(1), 31–41.

    Google Scholar 

  • Chasmer, L., and Hopkinson, C., 2001. Using airborne LASER altimetry and GIS to assess scale-induced radiation-loading errors in a glacierized basin. In Proceedings of the 58th Eastern Snow Conference, May 17–19, 2001, Ottawa, Canada, pp. 195–205.

    Google Scholar 

  • Csatho, B., Ahn, Y., Yoon, T., van der Veen, C. J., Vogel, S., Hamilton, G., Morse, D., Smith, B., and Spikes, V. B., 2005. ICESat measurements reveal complex pattern of elevation changes on Siple Coast ice streams, Antarctica. Geophysical Research Letters, 32, L23S10, doi:10.1029/2005GL024306.

    Google Scholar 

  • Davenport, I. J., Holden, N., and Gurney, R. J., 2004. Characterizing errors in airborne laser altimetry data to extract soil roughness. IEEE Transactions on Geoscience and Remote Sensing, 42, 2130–2141.

    Google Scholar 

  • Echelmeyer, K. A., Harrison, W. D., Larsen, C. F., Sapiano, J., Mitchell, J. E., Demallie, J., Rabus, B., Adalgeirsdottir, G., and Sombardier, L., 1996. Airborne surface profiling of glaciers: a case study in Alaska. Journal of Glaciology, 42, 538–547.

    Google Scholar 

  • Favey, E., Geiger, A., Gudmundsson, G. H., and Wehr, A., 1999. Evaluating the potential of an airborne laser-scanning system for measuring volume changes of glaciers. Geografiska Annaler, 81A, 555–561.

    Google Scholar 

  • Garvin, J. B., 1997. Monitoring glaciers with airborne and spaceborne laser altimetry. United States Geological Survey Open-file Report, 98-31, Williams Jr., R. S., and Ferrigno J. G.(eds.): URL: http://pubs.usgs.gov/of/1998/of98-031/index.htm.

  • Goulden, T., 2009. Prediction of Error Due to Terrain Slope in Lidar Observations. Unpublished Master of Science in Engineering thesis, Canada, The University of New Brunswick, 144 pp.

    Google Scholar 

  • Goulden, T., and Hopkinson, C., 2010. The forward propagation of integrated system component errors within airborne lidar data. Photogrammetric Engineering and Remote Sensing, 76, 589–601.

    Google Scholar 

  • Haeberli, W., Hoelzle, M., and Suter, S. (eds.), 1998. Into the Second Century of Worldwide Glacier Monitoring: Prospects and Strategies. Paris: UNESCO. Studies and Reports in Hydrology, Vol. 56, p. 227.

    Google Scholar 

  • Hodgson, M., and Bresnahan, P., 2004. Accuracy of airborne LiDAR-derived elevation: empirical assessment and error budget. Photogrammetric Engineering and Remote Sensing, 70, 331–339.

    Google Scholar 

  • Hopkinson, C., 2004. Place Glacier Terrain Modeling and 3D Laser Imaging. Contract Report No. TSD051603X. Prepared for the National Glaciology Program of the Geological Survey of Canada, M.N. Demuth, Scientific Authority, 22 pp + digital files on CD.

    Google Scholar 

  • Hopkinson, C., Chasmer, L., Munro, D. S., and Demuth, M. N., 2010. The influence of DEM resolution on simulated solar radiation-induced glacier melt. Hydrological Processes, 24(6), 775–788.

    Google Scholar 

  • Hopkinson, C., and Demuth, M. N., 2006. Using airborne lidar to assess the influence of glacier downwasting on water resources in the Canadian Rocky Mountains. Canadian Journal of Remote Sensing, 32(2), 212–222.

    Google Scholar 

  • Hopkinson, C., Demuth, M., Sitar, M., and Chasmer, L., 2001. Applications of lidar mapping in a glacierised mountainous terrain. In Stein, T. I. (ed.), IGARSS’01: Proceedings of the International Geoscience and Remote Sensing Symposium, July 9–14, Sydney, Australia. CDROM. IEEE, New York.

    Google Scholar 

  • Hopkinson, C., Demuth, M. N., Barlow, J., Sitar, M., Young, G., Pomeroy, J., and Munro, D. S., 2009. Investigating glacier dynamics using temporal air photo, LiDAR and oblique thermal imagery at Peyto Glacier; an overview. In Proceedings of the Canadian Symposium on Remote Sensing, June 22–25, Lethbridge, Alberta. Canadian Aeronautical and Space Institute.

    Google Scholar 

  • Kaser, G., Cogley, J. G., Dyurgerov, M. B., Meier, M. F., and Ohmura, A., 2006. Mass balance of glaciers and ice caps: consensus estimates for 1961-2004. Geophysical Research Letters, 33, L19501, doi:10.1029/2006GL027511.

    Google Scholar 

  • Keller, K., Casassa, G., Rivera, A., Forsberg, R., and Gundestrup, N., 2007. Airborne laser altimetry survey of Glacier Tyndall, Patagonia. Global and Planetary Change, 59, 101–109, doi:10.1016/j.gloplacha.2006.11.039 DOI:dx.doi.org.

    Google Scholar 

  • Kennet, M., and Eiken, T., 1997. Airborne measurement of glacier surface elevation by scanning laser altimeter. Annals of Glaciology, 24, 235–238.

    Google Scholar 

  • Krabill, W. B., Thomas, R., Jezek, K., Kuivinen, K., and Manizade, S., 1995. Greenland ice sheet thickness changes measured by laser altimetry. Geophysical Research Letters, 22, 2341–2344.

    Google Scholar 

  • Krabill, W. B., Abdalati, W., Frederick, E. B., Manizade, S. S., Martin, C. F., Sonntag, J. G., Swift, R. N., Thomas, R. H., and Yungel, J. G., 2002. Aircraft laser altimetry of elevation changes of the Greenland ice sheet: technique and accuracy assessment. Journal of Geodynamics, 34, 357–376.

    Google Scholar 

  • Lipovsky, P. S., Evans, S. G., Clague, J. J., Hopkinson, C., Couture, R., Bobrowsky, P., Ekström, G., Demuth, M. N., Delaney, K. B., Roberts, N. J., Clarke, G. K. C., and Schaeffer, A., 2008. The July 2007 rock and ice avalanches at Mount Steele, St. Elias Mountains, Yukon, Canada. Landslides, doi:10.1007/s10346-008-0133-4.

    Google Scholar 

  • Lutz, E., Geist, T., and Stotter, J., 2003. Investigations of airborne laser scanning signal intensity on glacial surfaces – utilizing comprehensive laser geometry modelling and orthophoto surface modelling (a case study: Svartisheibreen, Norway). In Mass, H.-G., Vosselman, G., and Streilein, A. (eds.), Proceedings of the ISPRS Workshop on 3D Reconstruction from Airborne Laser Scanner and InSAR Data, October 8–10, Dresden, Germany, pp. 101–106.

    Google Scholar 

  • Measures, R. M., 1984. Laser Remote Sensing. New York: Wiley.

    Google Scholar 

  • Reeh, N., 1999. Mass balance of the Greenland ice sheet: can modern observation methods reduce the uncertainty? Geografiska Annaler, 81A, 735–742.

    Google Scholar 

  • Rignot, E., and Thomas, R. H., 2002. Mass balance of Polar ice sheets. Science, 297, 1502–1506.

    Google Scholar 

  • Sauchyn, D., Demuth, M. N., and Pietronrio, A., 2008. Upland watershed management and global change: Canada's Rocky Mountains and western plains. In Garrido, A., and Dinar, A. (eds.), Managing Water Resources in a Time of Global Change: Mountains, Valleys and Floodplains, Contributions from the Rosenberg International Forum on Water Policy, Vaux Jr. H. (series ed.). London: Routledge, pp. 49–66.

    Google Scholar 

  • Thomas, R., Frederick, E., Krabill, W., Manizade, S., and Martin, C., 2006. Progressive increase in ice loss from Greenland. Geophysical Research Letters, 33, L10503, doi:10.1029/2006GL026075.

    Google Scholar 

  • Thomas, R., Frederick, E., Krabill, W., Manizade, S., and Martin, C., 2009. Recent changes on Greenland outlet glaciers. Journal of Glaciology, 55(189), 147–162.

    Google Scholar 

  • Töyrä, J., Pietroniro, A., Hopkinson, C., and Kalbfleisch, W., 2003. Assessment of airborne scanning laser altimetry (lidar) in a deltaic wetland environment. Canadian Journal of Remote Sensing, 29(6), 718–728.

    Google Scholar 

  • UNEP/WGMS, 2009. Global Glacier Changes – Facts and Figures: www.grid.unep.ch/glaciers/.

  • van de Wal, R. S. W., Boot, W., van den Broeke, M. R., Smeets, C. J. P. P., Reijmer, C. H., Donker, J. J. A., and Oerlemans, J., 2008. Large and rapid melt-induced velocity changes in the Ablation Zone of the Greenland Ice Sheet. Science, 321, 111–113.

    Google Scholar 

  • Vinther, B. M., Buchardt, S. L., Clausen, H. B., Dahl-Jensen, D., Johnsen, S. J., Fisher, D. A., Koerner, R. M., Raynaud, D., Lipenkov, V., Andersen, K. K., Blunier, T., Rasmussen, S. O., Steffensen, J. P., and Svensson, A. M., 2009. Holocene thinning of the Greenland ice sheet. Nature, 461, 385–388, doi:10.1038/nature08355.

    Google Scholar 

  • Wehr, A., and Lohr, U., 1999. Airborne laser scanning — an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 68–82.

    Google Scholar 

  • Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D., Cullen, R., de Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos, C., Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D. W., 2006. CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields. Advances in Space Research, 37, 841–871.

    Google Scholar 

  • Wivell, C. E., Steinwand, D. R., Kelly, G. G., and Meyer, D. J., 1992. Evaluation of terrain models for the geocoding and terrain correction of synthetic aperture radar (SAR) images. IEEE Transactions on Geoscience and Remote Sensing, 30(6), 1137–1144.

    Google Scholar 

  • Zwalley, H. J., 2005. Overview of scientific advances from the ICESat mission. EOS Transactions, American Geophysical Union, 86(52), Fall Meeting Supplement, Abstract C33A-01.

    Google Scholar 

  • Zwally, H. J., Schutz, B., Abdulati, W., Abshire, J., Bentley, C., Brenner, A., Bufton, J., Dezio, J., Handcock, D., Harding, D., Herring, T., Minster, B., Quinn, K., Palm, S., Spinhirne, J., and Thomas, R., 2002a. ICESat’s laser measurements of polar ice, atmosphere, ocean and land. Journal of Geodynamics, 34, 405–445.

    Google Scholar 

  • Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen, K., 2002b. Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297, 218–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N. Demuth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Demuth, M.N. (2011). LIDAR in Glaciology. In: Singh, V.P., Singh, P., Haritashya, U.K. (eds) Encyclopedia of Snow, Ice and Glaciers. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2642-2_332

Download citation

Publish with us

Policies and ethics