Skip to main content

Automated Glacier Mapping

  • Reference work entry
  • First Online:
  • 285 Accesses

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Glacier mapping; Glacier outline digitizing; Multispectral classification

Definition

Automated glacier mapping generates digital glacier outlines in a vector format from automated classification of remote sensing data.

Historical background

Glaciers and icecaps were in the focus of satellite observations at the time when the first data from the Landsat mission (1972) became available. While the large regions covered by satellite data were always considered as a benefit for glacier related applications, mapping of glacier extent was introduced quite late. Early applications focused on discriminating snow from ice and mapping of snowlines (Østrem, 1975; Rott, 1976) or analysis of glacier movement and flow characteristics (Krimmel and Meier, 1975). It has to be noted that in the early days of data analysis (1970s), most work was performed on contrast enhanced photographic prints rather than with digital data (e.g., Dowdeswell and Cooper, 1986). The full potential of directly...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Albert, T., 2002. Evaluations of remote sensing techniques for ice-area classifications applied to the tropical Quelccaya ice cap, Peru. Polar Geography, 26, 210–226.

    Google Scholar 

  • Aniya, M., Sato, H., Naruse, R., Skvarca, P., and Casassa, G., 1996. The use of satellite and airborne imagery to inventory outlet glaciers of the southern Patagonia Icefield, South America. Photogrammetric Engineering and Remote Sensing, 62, 1361–1369.

    Google Scholar 

  • Bamber, J., 2006. Remote sensing in glaciology. In Knight, P. (ed.), Glacier Science and Environmental Change. Oxford: Blackwell, pp. 370–382.

    Google Scholar 

  • Bayr, K. J., Hall, D. K., and Kovalick, W. M., 1994. Observations on glaciers in the eastern Austrian Alps using satellite data. International Journal of Remote Sensing, 15, 1733–1742.

    Google Scholar 

  • Berthier, E., Arnaud, Y., Baratoux, D., Vincent, C., and Rémy, F., 2004. Recent rapid thinning of the “Mer de Glace” glacier derived from satellite optical images. Geophysical Research Letters, 31, L17401.

    Google Scholar 

  • Binaghi, E., Madella, P., Montesano, M. P., and Rampini, A., 1997. Fuzzy contextual classification of multisource remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 35, 326–339.

    Google Scholar 

  • Bindschadler, R., Dowdeswell, J., Hall, D. K., and Winther, J.-G., 2001. Glaciological applications with Landsat-7 imagery: early assessments. Remote Sensing of Environment, 78, 163–179.

    Google Scholar 

  • Bishop, M. P., Bonk, R., Kamp, U., and Shroder, J. F., Jr., 2001. Terrain analysis and data modeling for alpine glacier mapping. Polar Geography, 25, 182–201.

    Google Scholar 

  • Bolch, T., Buchroithner, M. F., Kunert, A., and Kamp, U., 2007. Automated delineation of debris-covered glaciers based on ASTER data. In Gomarasca, M. A. (ed.), GeoInformation in Europe: Proceedings of the 27th Symposium of the European Association of Remote Sensing Laboratories (EARSeL), Bolzano/Bozen, Italy, 4–7 June 2007. Netherlands: Millpress, pp. 403–410.

    Google Scholar 

  • Bronge, L. B., and Bronge, C., 1999. Ice and snow-type classification in the Vestfold hills, East Antarctica, using Landsat-TM data and ground radiometer measurements. International Journal of Remote Sensing, 20, 225–240.

    Google Scholar 

  • Della Ventura, A., Rampini, A., and Serandrei Barbero, R., 1987. Development of a satellite remote sensing technique for the study of alpine glaciers. International Journal of Remote Sensing, 8, 203–215.

    Google Scholar 

  • Dowdeswell, J. A., and Cooper, A. P. R., 1986. Digital mapping in polar regions from Landsat photographic products: a case study. Annals of Glaciology, 8, 47–50.

    Google Scholar 

  • Dozier, J., 1984. Snow reflectance from Landsat 4 Thematic Mapper. IEEE Transactions on Geoscience and Remote Sensing, GE-22, 323–328.

    Google Scholar 

  • Dozier, J., 1989. Spectral signature of alpine snow cover from Landsat 5 T. Remote Sensing of Environment, 28, 9–22.

    Google Scholar 

  • Dozier, J., and Marks, D., 1987. Snow mapping and classification from Landsat Thematic Mapper data. Annals of Glaciology, 9, 97–103.

    Google Scholar 

  • Grenfell, T. C., Perovich, D. K., and Ogren, J. A., 1981. Spectral albedos of an alpine snow pack. Cold Regions Science and Technology, 4, 121–127.

    Google Scholar 

  • Haeberli, W., 2006. Integrated perception of glacier changes: a challenge of historical dimensions. In Knight, P. G. (ed.), Glacier Science and Environmental Change. Oxford: Blackwell, pp. 423–430.

    Google Scholar 

  • Haeberli, W., Barry, R., and Cihlar, J., 2000. Glacier monitoring within the Global Climate Observing System. Annals of Glaciology, 31, 241–246.

    Google Scholar 

  • Hall, D. K., Ormsby, J. P., Bindschadler, R. A., and Siddalingaiah, H., 1987. Characterization of snow and ice zones on glaciers using Landsat Thematic Mapper data. Annals of Glaciology, 9, 104–108.

    Google Scholar 

  • Hall, D. K., Chang, A. T. C., and Siddalingaiah, H., 1988. Reflectances of glaciers as calculated using Landsat 5 Thematic Mapper data. Remote Sensing of Environment, 25, 311–321.

    Google Scholar 

  • Hall, D. K., Chang, A. T. C., Foster, J. L., Benson, C. S., and Kovalick, W. M., 1989. Comparison of in situ and Landsat derived reflectances of Alaskan glaciers. Remote Sensing of Environment, 28, 493–504.

    Google Scholar 

  • Hall, D. K., Bindschadler, R. A., Foster, J. L., Chang, A. T. C., and Siddalingaiah, H., 1990. Comparison of in situ and satellite derived reflectances of Forbindels glacier, Greenland. International Journal of Remote Sensing, 11, 493–504.

    Google Scholar 

  • Hall, D. K., Bayr, K. J., Schöner, W., Bindschadler, R. A., and Chien, J. Y. L., 2003. Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sensing of Environment, 86, 566–577.

    Google Scholar 

  • Howarth, P., and Ommanney, C. S., 1986. The use of Landsat digital data for glacier inventories. Annals of Glaciology, 8, 90–92.

    Google Scholar 

  • IPCC, 2007. Fourth Assessment Report. Cambridge and New York: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Jacobs, J. D., Simms, E. L., and Simms, A., 1997. Recession of the southern part of Barnes ice cap, Baffin island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM. Journal of Glaciology, 43(143), 98–102.

    Google Scholar 

  • Kääb, A., 2005. Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sensing of Environment, 94, 463–474.

    Google Scholar 

  • Kieffer, et al., 2000. New eyes in the sky measure glaciers and ice sheets. EOS, Transactions, American Geophysical Union, 81(24), 270.

    Google Scholar 

  • Krimmel, R. M., and Meier, M. F., 1975. Glacier applications of ERTS-1 images. Journal of Glaciology, 15(73), 391–402.

    Google Scholar 

  • Orheim, O., and Lucchitta, B. K., 1987. Snow and ice studies by Thematic Mapper and Multispectral Scanner Landsat images. Annals of Glaciology, 9, 109–118.

    Google Scholar 

  • Østrem, G., 1975. ERTS – 1 data in glaciology – an effort to monitor glacier mass balance from satellite imagery. Journal of Glaciology, 15(73), 403–415.

    Google Scholar 

  • Paul, F., 2001. Evaluation of different methods for glacier mapping using Landsat TM. EARSeL eProceedings, 1, 239–245.

    Google Scholar 

  • Paul, F., 2002a. Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat 5 TM and Austrian glacier inventory data. International Journal of Remote Sensing, 23, 787–799.

    Google Scholar 

  • Paul, F., 2002b. Combined technologies allow rapid analysis of glacier changes. EOS, Transactions, American Geophysical Union, 83(23), 253, 260, 261.

    Google Scholar 

  • Paul, F., and Andreassen, L. M., 2009. Creating a glacier inventory for the Svartisen region (Norway) from Landsat ETM + satellite data: challenges and results. Journal of Glaciology, 55(192), 607–618.

    Google Scholar 

  • Paul, F., and Haeberli, W., 2008. Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophysical Research Letters, 35, L21502.

    Google Scholar 

  • Paul, F., and Hendriks, J., 2010. Optical remote sensing of glaciers. In Pellikka, P., and Rees, W. G. (eds.), Remote Sensing of Glaciers – Techniques for Topographic, Spatial and Thematic Mapping of Glaciers. Leiden: CRC Press, Taylor and Francis, pp. 137–152.

    Google Scholar 

  • Paul, F., and Kääb, A., 2005. Perspectives on the production of a glacier inventory from multispectral satellite data in the Canadian Arctic: Cumberland peninsula, Baffin island. Annals of Glaciology, 42, 59–66.

    Google Scholar 

  • Paul, F., Kääb, A., Maisch, M., Kellenberger, T. W., and Haeberli, W., 2002. The new remote sensing derived Swiss glacier inventory: I Methods. Annals of Glaciology, 34, 355–361.

    Google Scholar 

  • Paul, F., Huggel, C., Kääb, A., and Kellenberger, T. W., 2003. Comparison of TM-derived glacier areas with higher resolution data sets. EARSeL eProceedings, 2, 15–21.

    Google Scholar 

  • Paul, F., Huggel, C., and Kääb, A., 2004a. Combining satellite multispectral image data and a digital elevation model for mapping of debris-covered glaciers. Remote Sensing of Environment, 89, 510–518.

    Google Scholar 

  • Paul, F., Kääb, A., Maisch, M., Kellenberger, T. W., and Haeberli, W., 2004b. Rapid disintegration of Alpine glaciers observed with satellite data. Geophysical Research Letters, 31, L21402.

    Google Scholar 

  • Paul, F., Escher-Vetter, H., and Machguth, H., 2009a. Comparison of mass balances for Vernagtferner obtained from direct measurements and distributed modeling. Annals of Glaciology, 50, 169–177.

    Google Scholar 

  • Paul, F., Kääb, A., Rott, H., Shepherd, A., Strozzi, T., and Volden, E., 2009b. GlobGlacier: mapping the world’s glaciers and ice caps from space. EARSeL eProceedings, 8, 11–25.

    Google Scholar 

  • Paul, F., Barry, R., Cogley, G., Frey, H., Haeberli, W., Ohmura, A., Ommanney, S., Raup, B., Rivera, A., and Zemp, M., 2009c. Recommendations for the compilation of glacier inventory data from digital sources. Annals of Glaciology, 50(53), 119–126.

    Google Scholar 

  • Qunzhu, Z., Meisheng, C., Xuezhi, F., Fengxian, L., Xianzhang, C., and Wenkun, S., 1985. A study of spectral reflection characteristics for snow, ice and water in the north of China. International Association of Hydrological Sciences, 145, 451–462.

    Google Scholar 

  • Rabatel, A., Dedieu, J. P., and Vincent, C., 2005. The use of remote sensing data to determine equilibrium line altitude and mass balance time series validation on three French glaciers for the 1994–2002 period. Journal of Glaciology, l51(175), 539–546.

    Google Scholar 

  • Racoviteanu, A. E., Williams, M. W., and Barry, R. G., 2008. Optical remote sensing of glacier characteristics: a review with focus on the Himalaya. Sensors, 8, 3355–3383.

    Google Scholar 

  • Racoviteanu, A. E., Paul, F., Raup, B., Khalsa, S. J. S., and Armstrong, R., 2009. Challenges in glacier mapping from space: recommendations from the Global Land Ice Measurements from Space (GLIMS) initiative. Annals of Glaciology, 50(53), 53–69.

    Google Scholar 

  • Raper, S. C. B., and Braithwaite, R. J., 2006. Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature, 439, 311–313.

    Google Scholar 

  • Raup, B. H., and Khalsa, J. S., 2007. GLIMS analysis tutorial (Online). Available from World Wide Web: http://www.glims.org/MapsAndDocs/assets/GLIMS_Analysis_Tutorial_a4.pdf

  • Raup, B. H., Kieffer, H. H., Hare, T. M., and Kargel, J. S., 2000. Generation of data acquisition requests for the ASTER satellite instrument for monitoring a globally distributed target: glaciers. IEEE Transactions on Geoscience and Remote Sensing, 38, 1105–1112.

    Google Scholar 

  • Raup, B. H., Kääb, A., Kargel, J. S., Bishop, M. P., Hamilton, G., Lee, E., Paul, F., Rau, F., Soltesz, D., Khalsa, S. J. S., Beedle, M., and Helm, C., 2007. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Computers and Geosciences, 33, 104–125.

    Google Scholar 

  • Rees, W. G., 2005. Remote Sensing of Snow and Ice. Boca Raton, London, New York: Taylor & Francis, p. 312.

    Google Scholar 

  • Rott, H., 1976. Analyse der Schneeflächen auf Gletschern der Tiroler Zentralalpen aus Landsat Bildern. Zeitschrift für Gletscherkunde und Glazialgeologie, 12, 1–28.

    Google Scholar 

  • Rott, H., and Markl, G., 1989. Improved snow and glacier monitoring by Landsat Thematic Mapper. In Proceedings of a Workshop on Landsat Thematic Mapper Applications. ESA, SP-1102, pp. 3–12.

    Google Scholar 

  • Rundquist, D. C., Collins, S. C., Barnes, R. B., Bussom, D. E., Samson, S. A., and Peake, J. S., 1980. The use of Landsat digital information for assessing glacier inventory parameters. International Association of Hydrological Sciences, 126, 321–331.

    Google Scholar 

  • Schiermeier, Q., 2010. Glacier estimate is on thin ice. Nature, 463, 276–277.

    Google Scholar 

  • Shukla, A., Arora, M. K., and Gupta, R. P., 2010. Synergistic approach for mapping debris-covered glaciers using optical thermal remote sensing data with inputs from geomorphometric parameters. Remote Sensing of Environment, doi:10.1016/j.rse.2010.01.015.

    Google Scholar 

  • Sidjak, R. W., and Wheate, R. D., 1999. Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using, Landsat TM and digital elevation data. International Journal of Remote Sensing, 20, 273–284.

    Google Scholar 

  • Svoboda, F., and Paul, F., 2009. A new glacier inventory on southern Baffin island, Canada, from ASTER data: I. Applied methods, challenges and solutions. Annals of Glaciology, 50(53), 11–21.

    Google Scholar 

  • USGS, 2008. Opening the Landsat Archive. USGS Factsheet 2008–3091. URL: http://pubs.usgs.gov/fs/2008/3091/pdf/fs2008-3091.pdf

  • Warren, S. G., 1982. Optical properties of snow. Reviews of Geophysics and Space Physics, 20, 67–89.

    Google Scholar 

  • WGMS, 1989. World glacier inventory – status 1988. In Haeberli, W., Bösch, H., Scherler, K., Østrem, G., and Wallén, C. C. (eds.), World Glacier Monitoring Service. Zurich: IAHS (ICSI)/UNEP/UNESCO, p. 458.

    Google Scholar 

  • Williams, R. S., Jr., and Hall, D. K., 1998. Use of remote-sensing techniques. In Haeberli, W., Hoelzle, M., and Suter, S. (eds.), Into the Second Century of Worldwide Glacier Monitoring: Prospects and Strategies. Paris: UNESCO, pp. 97–111.

    Google Scholar 

  • Williams, R. S., Jr., Hall, D. K., and Benson, C. S., 1991. Analysis of glacier facies using satellite techniques. Journal of Glaciology, 37(125), 120–127.

    Google Scholar 

  • Winther, J. G., 1993. Landsat TM derived and in situ summer reflectance of glaciers in Svalbard. Polar Reserach, 12, 37–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Paul, F. (2011). Automated Glacier Mapping. In: Singh, V.P., Singh, P., Haritashya, U.K. (eds) Encyclopedia of Snow, Ice and Glaciers. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2642-2_33

Download citation

Publish with us

Policies and ethics