Skip to main content

Atmosphere-Snow/Ice Interactions

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Definition

Interactions between the atmosphere and snow/ice are due to exchange of heat, mass, and momentum at the air-snow/ice interface. Through the exchange, interactive dynamic and thermodynamic processes take place at a wide range of spatial and temporal scales in the atmosphere and snow/ice.

Introduction

The atmosphere-snow/ice heat exchange includes solar shortwave and thermal longwave radiation, as well as turbulent fluxes of sensible and latent heat, the latter related to sublimation/condensation. The heat exchange processes modify the heat content of snow/ice and the atmospheric boundary layer (ABL), defined as the air layer, typically 0.1–1 km high, where the direct effects of the earth surface are felt at time scales of hours. The changes in the heat content result in metamorphosis, melt, freeze, or transport of liquid water or water vapor in snow/ice and in buoyant or stabilizing dynamic forces in the ABL. Cooling of sloping snow/ice surfaces commonly results in generation...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-2642-2_31
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   549.99
Price excludes VAT (USA)
  • ISBN: 978-90-481-2642-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   699.99
Price excludes VAT (USA)
Atmosphere-Snow/Ice Interactions, Figure 1
Atmosphere-Snow/Ice Interactions, Figure 2

Bibliography

  • Andreas, E. L., 1987. A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorology, 38, 159–184.

    Google Scholar 

  • Andreas, E. L., and Claffey, K. J., 1995. Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements. Journal of Geophysical Research, 100, 4821–4831.

    Google Scholar 

  • Ball, F. K., 1960. Winds on the ice slopes of Antarctica. In Antarctic Meteorology. London: Pergamon, pp. 9–16.

    Google Scholar 

  • Bartlett, P. A., MacKay, M. D., and Verseghy, D. L., 2006. Modified snow algorithms in the Canadian Land Surface Scheme: Model runs and sensitivity analysis at three boreal forest stands. Atmosphere-Ocean, 44, 207–222.

    Google Scholar 

  • Curry, J. A., Rossow, W. B., Randall, D., and Schramm, J. L., 1996. Overview of Arctic cloud and radiation characteristics. Journal of Climate, 9, 1731–1764.

    Google Scholar 

  • Dery, S. J., and Yau, M. K., 2002. Large-scale mass balance effects of blowing snow and surface sublimation. Journal of Geophysical Research, 107, 4679.

    Google Scholar 

  • Gordon, M., Simon, K., and Taylor, P. A., 2006. On snow depth predictions with the Canadian land surface scheme Including a parametrization of blowing snow sublimation. Atmosphere-Ocean, 44, 239–255.

    Google Scholar 

  • Granskog, M., Vihma, T., Pirazzini, R., and Cheng, B., 2006. Superimposed ice formation and surface fluxes on sea ice during the spring melt-freeze period in the Baltic Sea. Journal of Glaciology, 52, 119–127.

    Google Scholar 

  • Intrieri, J., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas, E. L., Guest, P. S., and Moritz, R. E., 2002. An annual cycle of Arctic surface cloud forcing at SHEBA. Journal of Geophysical Research, 107, 8039, doi:10-1029/2000JC000439.

    Google Scholar 

  • King, J. C., and Turner, J., 1997. Antarctic Meteorology and Climatology. Cambridge: Cambridge University Press.

    Google Scholar 

  • King, J. C., Pomeroy, J. W., Gray, D. M., Fierz, C., Fohn, P. M. B., Harding, R. J., Jordan, R. E., Martin, E., and Plüss, C., 2008. Snow-atmosphere energy and mass balance. In Armstrong, R. L., and Brun, E. (eds.), Snow and Climate. Physical Processes, Surface Energy Exchange and Modeling. Cambridge: Cambridge University Press, pp. 70–124.

    Google Scholar 

  • Lüpkes, C., and Birnbaum, G., 2005. Surface drag in the Arctic marginal sea-ice zone: a comparison of different parameterization concepts. Boundary-Layer Meteorology, 117, 179–211.

    Google Scholar 

  • Monin, A. S., and Obukhov, A. M., 1954. Dimensionless characteristics of turbulence in the surface layer (in Russian). Trudy Geofiz. Inst. Akademia Nauk SSSR, 24, 163–187.

    Google Scholar 

  • Nansen, F., 1902. The Norwegian North Polar Expedition, 1893–1896. Scientific Results. Volume III. London: Christiania.

    Google Scholar 

  • Obukhov, A. M., 1971. Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Meteorology, 2, 7–29.

    Google Scholar 

  • Parish, T. R., and Cassano, J. J., 2003. The role of katabatic winds on the Antarctic surface wind regime. Monthly Weather Review, 131, 317–333.

    Google Scholar 

  • Persson, P. O. G., Fairall, C. W., Andreas, E. L., Guest, P. S., and Perovich, D. K., 2002. Measurements near the atmospheric surface flux group tower at SHEBA: Near-surface conditions and surface energy budget. Journal of Geophysical Research, 107, 8045, doi:10.1029/2000JC000705.

    Google Scholar 

  • Pirazzini, R., 2004. Surface albedo measurements in Antarctic sites in summer. Journal of Geophysical Research, 109, D20118, doi:10.1029/2004JD004617.

    Google Scholar 

  • Pirazzini, R., and Räisänen, P., 2008. A method to account for surface albedo heterogeneity in single column radiative transfer calculations under overcast conditions. Journal of Geophysical Research, 113, D20108, doi:10.1029/2008JD009815.

    Google Scholar 

  • Prandtl, L., 1952. Essentials of Fluid Dynamics: With Applications to Hydraulics, Aeronautics, Meteorology and Other Subjects. (English translation). London: Blackie & Son.

    Google Scholar 

  • Prata, A. J., 1996. A new long-wave formula for estimating downward clear-sky radiation at the surface. Quarterly Journal of the Royal Meteorological Society, 122, 1127–1151.

    Google Scholar 

  • Serreze, M. C., Kahl, J. D., and Schnell, R. C., 1992. Low-level temperature inversions in the Eurasian Arctic and comparisons with Soviet drifting station data. Journal of Climate, 5, 599–613.

    Google Scholar 

  • Smeets, C. J. P. P., Duynkerke, P. G., and Vugts, H. F., 1998. Observed wind profiles and turbulence fluxes over an ice surface with changing surface roughness. Boundary-Layer Meteorology, 92, 101–123.

    Google Scholar 

  • Sorteberg, A., and Walsh, J. E., 2008. Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, Series A, 60A, 570–586.

    Google Scholar 

  • Stössel, A., Cheon, W.-G., and Vihma, T., 2008. Interactive momentum flux forcing over sea ice in a global ocean GCM. Journal of Geophysical Research, 113, C05010, doi:10.1029/2007JC004173.

    Google Scholar 

  • Stull, R. B., 1988. An Introduction to Boundary-Layer Meteorology. Dordrecht: Kluwer.

    Google Scholar 

  • Tietavainen, H., and Vihma, T., 2008. Atmospheric moisture budget over Antarctica and the Southern Ocean based on the ERA-40 reanalysis. International Journal of Climatology, 28, 1977–1995, doi:10.1002/joc.1684.

    Google Scholar 

  • Tisler, P., Vihma, T., Müller, G., and Brümmer, B., 2008. Modelling of warm-air advection over Arctic sea ice. Tellus, Series A, 60A, 775–788.

    Google Scholar 

  • Uotila, J., 2001. Observed and modelled sea ice drift response to wind forcing in the northern Baltic Sea. Tellus, Series A, 53A, 112–128.

    Google Scholar 

  • Vihma, T., and Haapala, J., 2009. Geophysics of sea ice in the Baltic sea – a review. Progress in Oceanography, 80, 129–148, doi:10.1016/j.pocean.2009.02.002.

    Google Scholar 

  • Vihma, T., Launiainen, J., and Uotila, J., 1996. Weddell Sea ice drift: kinematics and wind forcing. Journal of Geophysical Research, 101, 18279–18296.

    Google Scholar 

  • Vihma, T., Jaagus, J., Jakobson, E., and Palo, T., 2008. Meteorological conditions in the Arctic Ocean in spring and summer 2007 as recorded on the drifting ice station Tara. Geophysical Research Letters, 35, L18706, doi:10.1029/2008GL034681.

    Google Scholar 

  • Vihma, T., Johansson, M. M., and Launiainen, J., 2009. Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer. Journal of Geophysical Research, 114, C04019, doi:10.1029/2008JC004995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Vihma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Vihma, T. (2011). Atmosphere-Snow/Ice Interactions. In: Singh, V.P., Singh, P., Haritashya, U.K. (eds) Encyclopedia of Snow, Ice and Glaciers. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2642-2_31

Download citation