Skip to main content

Bioerosion

  • Reference work entry

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Definition

Bioerosion can be defined as the destruction and removal of consolidated mineral or lithic substrate by the direct action of organisms (Neumann, 1966) and is complemented by physical and chemical processes of erosion. This review deals only with the removal of substrate from coral reefs and concentrates on modern day reefs. However, there is an extensive literature on boring organisms on fossil reefs, for a review see Tapanila (2008) and the agents and mechanisms of boring seem similar on these reefs to those occurring on modern day reefs (Wood, 1999).

Introduction

Bioerosion is a natural process occurring on all reefs although rates and agents may vary across the reef and together with reef growth which also varies, results in them being dynamic systems. It is the balance between these two processes which determines the overall shape of the reef together with physical and chemical erosion of the coral substrate. Bioerosion includes the removal of surface substrate by...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-2639-2_5
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   549.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-2639-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Bioerosion. Figure 1
Bioerosion. Figure 4
Bioerosion. Figure 2
Bioerosion. Figure 3

Bibliography

  • Asgaard, U., Bromely, R. G., 2008. Echinometrid sea urchin, their trophic styles and corresponding bioerosion. In Wisshak, M., and Tapanila, L. (eds.), Current Developments in Bioerosion. Erlangen Conference Series. Berlin Heidelberg: Springer-Verlag, pp. 280–303.

    Google Scholar 

  • Bak, R. P. M., 1976. The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Netherlands Journal of Sea Research, 10, 285–337.

    CrossRef  Google Scholar 

  • Barbosa, S. S., Byrne, M., Kelahar, B. P., 2008. Bioerosion caused by foraging of the tropical chiton Acanthopleura gemmata at One Tree reef, southern Great Barrier Reef. Coral Reefs, 27, 635–639.

    CrossRef  Google Scholar 

  • Barnes, D. J., Chalker, B. E., 1990. Calcification and photosynthesis in reef-building corals and algae. In Dubinsky, Z. (ed.), Coral Reefs. Amsterdam: Elsevier Science, pp. 109–131.

    Google Scholar 

  • Barthel, K., 1982. Lithophaga obese (Philippi) reef-dwelling and cementing pelecypod–a survey of its boring. Proceedings of 4th International Coral Reef Symposium, Manila 1981, 2, 649–659.

    Google Scholar 

  • Bellwood, D. R., 1986. The Functional Morphology, Systematic and Behavioural Ecology of Parrot Fishes (Family Scaridae). Unpublished PhD, Queensland, Australia, James Cook University.

    Google Scholar 

  • Bellwood, D. R., 2003. Origins and escalation of herbivory in fishes: a functional perspective. Palaeobiology, 29(1), 71–83.

    CrossRef  Google Scholar 

  • Bellwood, D. R., and Choat, J. H., 1990. A functional analysis of gr azing in parrotfishes (family Scaridae) the ecological implications. Environmental Biology of Fishes, 28, 189–214.

    CrossRef  Google Scholar 

  • Bellwood, D. R., and Schultz, O., 1991. A review of the fossil record of the parrotfishes (Labroidei: Scaridae) with a description of a new Calotomus species from the Middle Miocene (Badenian) of Austria. Annalen Naturhistorisches Museum Wien, 92, 55–71.

    Google Scholar 

  • Brodie, J., Fabricius, K., De’Ath, G., and Okaji, K., 2005. Are increased nutrient inputs responsible for more outbreaks of crown-of thorns-starfish? An appraisal of the evidence. Marine Pollution Bulletin, 51, 266–278.

    CrossRef  Google Scholar 

  • Bromley, R. G., 1978. Bioerosion of Bermuda reefs. Palaeogeography, Palaeoclimatology and Palaeoecology, 23, 169–197.

    CrossRef  Google Scholar 

  • Bromley, R. G., and D’Alessandro, A., 1989. Ichnological studies of shallow marine endolithic sponges from the Italian coast. Rivista italiana di paleontologia e stratigrafia, 95, 227–296.

    Google Scholar 

  • Bruggemann, J. H., van Kessel, A. M., van Rooij, J. M., and Breeman, A. M., 1996. Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implications of fish size, feeding mode and habitat use. Marine Ecology Progress Series, 134, 59–71.

    CrossRef  Google Scholar 

  • Buddemeier, R. W., Maragos, J. E., and Knutson, D. W., 1974. Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. Journal of Experimental Biology and Ecology, 141, 179–200.

    CrossRef  Google Scholar 

  • Caspers, H., 1984. Spawning periodicity and habitat of the palolo worm Eunice viridis (Polychaeta: Eunicidae) in the Samoan Islands. Marine Biology, 79(3), 229–236.

    CrossRef  Google Scholar 

  • Chaves-Fonnegra, A., and Zea, S., 2007. Observations on reef coral undermining by the Caribbean excavating sponge Cliona delitrix (Demospongiae, Hadromerida). In: Custódio, M. R., Hajdu, E., Lôbo-Hajdu, G., and Muricy, M. (eds.), Sponges – Biodiversity, Innovation, Sustainability. Proceedings of the 7th International Sponge Symposium (Rio de Janeiro), pp. 247–224.

    Google Scholar 

  • Chazottes, V., Le Campion-Alsumard, T., Peyrot-Clausade, M., and Cuet, P., 2002. The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs, 21, 375–390.

    Google Scholar 

  • Choat, J. H., and Randall, J. E., 1986. A revision of the parrotfishes (family Scaridae) of the Great Barrier Reef of Australia with description of a new species. Records of the Australian Museum, 38(4), 175–239.

    CrossRef  Google Scholar 

  • Choat, J. H., Clements, K. D., and Robbins, W. D., 2002. The trophic status of herbivorous fishes on coral reefs. I: Dietary analyses. Marine Biology, 140, 613–623.

    CrossRef  Google Scholar 

  • Cinner, J. E., McClanahan, T. R., Daw, T. M., Graham, N. A. J., Maina, J., Wilson, S. K., and Hughes, T. P., 2009. Linking social and ecological systems to sustain coral reef fisheries. Current Biology, 19(3), 206–212.

    CrossRef  Google Scholar 

  • Colgan, M. W., 1987. Coral reef recovery on Guam (Micronesia) after catastrophic predation by Acanthaster planci. Ecology, 68, 1592–1605.

    CrossRef  Google Scholar 

  • Cortes, J., and Risk, M. J., 1985. A coral reef under siltation stress: Cahuita, Costa Rica. Bulletin of Marine Science, 36, 339–356.

    Google Scholar 

  • Cowman, P. F., Bellwood, D. R., and van Herwerden, L., 2009. Dating the evolutionary origins of wrasse lineages (Labridae) and the rise of trophic novelty on coral reefs. Molecular Phylogenetics and Evolution, 52(3), 621–631.

    Google Scholar 

  • Davies P. J., 1983. Reef growth. In: Barnes D. J. (ed.), Perspectives on Coral Reefs. Townsville: Australian Institute of Marine Science, p. 69106.

    Google Scholar 

  • Davies, P. J., and Hutchings, P. A., 1983. Initial colonisation, erosion and accretion on coral substrates – experimental results Lizard Island, Great Barrier Reef. Coral Reefs, 2, 27–35.

    CrossRef  Google Scholar 

  • DeVantier, L. M., and Done, T. J., 2007. Inferring past outbreaks of crown-of thorns seastars from scar patterns on coral heads. In Aranson, R., and Beer R. (eds.), Geological Applications to Coral Reef Ecology. New York: Springer, pp. 85–125.

    CrossRef  Google Scholar 

  • Dudgeon, D., Morton, B., 1982. Coral associated Molluscs of Tolo Harbour, Hong Kong. In Morton, B., and Tseng, C. K. (eds.).Proceedings of the First International Marine Biological Workshop: The Marine Flora and Fauna of Hong Kong and Southern China, Hong Kong, 1980. Hong Kong: Hong Kong University Press, pp. 627–650.

    Google Scholar 

  • Eakin, C. M., 1992. Post-el Niňo Panamanian reefs: less accretion, more erosion and damselfish protection. Proceedings of 7th International Coral Reef Symposium, Guam, 2, 387–396.

    Google Scholar 

  • Edinger, E. N., and Risk, M. J., 1997. Sponge borehole size as a relative measure of bioerosion and paleoproductivity. Lethaia, 29, 275–286.

    CrossRef  Google Scholar 

  • Frydl, P., and Stearn, C. W., 1978. Rate of bioerosion by parrotfish in Barbados reef environments. Journal of Sedimentary Petrology, 48(4), 1149–1158.

    Google Scholar 

  • Garcia-Pichel, F., 2006. Plausible mechanisms for the boring of carbonates by microbial phototrophs. Sedimentary Geology, 185, 205–213.

    CrossRef  Google Scholar 

  • Gektidis, M., 1999. Development of microbial euendolithic communities: the influence of light and time. Bulletin Geological Society Denmark, 45, 147–150.

    Google Scholar 

  • Glynn, P. W., 1973. Acanthaster: effect on coral reef growth in Panama. Science, 180, 504–506.

    CrossRef  Google Scholar 

  • Glynn, P. W., 1988. El Nino warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea, 7, 20–30.

    Google Scholar 

  • Golubic, S., Friedmann, I., and Schneider, J., 1981. The lithobiontic ecological niche, with special reference to microorganisms. Sedimentary Geology, 51, 475–478.

    Google Scholar 

  • Goreau, T. F., and Hartmann, W. D., 1963. Boring sponges as controlling factors in the formation and maintenance of coral reefs. In Sogrinaes, R. F. (ed.), Mechanisms of hard destruction. PubIication American Association Advancement of Science, Vol. 75, pp. 25–54.

    Google Scholar 

  • Grassle, J. F., 1973. Variety in coral reef communities. In Biology and Geology of Coral Reefs, New York: Academic Press, Inc., Vol. II, Biology 1, pp. 247–270.

    CrossRef  Google Scholar 

  • Greenstein, B. J., 1993. Is the fossil record of regular echinoids really so poor? A comparison of living and subfossil assemblages. Palaios, 8, 587–601.

    CrossRef  Google Scholar 

  • Haigler, S., 1969. Boring mechanisms of Polydora websteri inhabiting Crassostrea virginica. American Zoologist, 9, 821–828.

    Google Scholar 

  • Hartman, W. D., 1958. Natural history of the marine sponges of southern New England. Bulletin Peabody Museum Natural History, 12, 1–155.

    Google Scholar 

  • Hatch, W. I., 1980. The Implication of Carbonic Anhydrase in the Physiological Mechanism of Penetration of Substrata by the Boring Sponge Cliona celata. PhD Thesis, Boston University, 171 pp.

    Google Scholar 

  • Hein, F. J., and Risk, M. J., 1975. Bioerosion of coral heads: inner patch reefs, Florida reef tract. Bulletin of Marine Science, 25, 133–138.

    Google Scholar 

  • Highsmith, R. C., Lueptow, R. L., and Schonberg, S. C., 1983. Growth and bioerosion of three massive corals on the Belize barrier reef. Marine Ecology Progress Series, 13, 261–271.

    CrossRef  Google Scholar 

  • Hoey, A. S., and Bellwood, D. R., 2008. Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs, 27, 37–47.

    CrossRef  Google Scholar 

  • Holmes, K. E., 2000. Effects of eutrophication on bioeroding sponge communities with the description of new West Indian sponges, Cliona spp. (Porifera: Hadromerida; Clionidae). Invertebrate Zoology, 119, 125–138.

    CrossRef  Google Scholar 

  • Holmes, K. E., Edinger, E. N., Hariyadi, Limmon, G. V., and Risk, M. J., 2000. Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Marine Pollution Bulletin, 40, 606–617.

    CrossRef  Google Scholar 

  • Hudson, J. H., 1977. Long term bioerosion rates on a Florida reef: new method. Proceedings of Third International Coral Reef Symposium, 2, 491–498.

    Google Scholar 

  • Hutchings, P. A., 1986. Biological destruction of coral reefs – a review. Coral Reefs, 4(4), 239–252.

    CrossRef  Google Scholar 

  • Hutchings, P. A., 2008. Role of polychaetes in bioerosion of coral substrate. In Tapanila, L., Wisshak, M., (eds.), Current Developments in Bioerosion. Springer Publishing as part of the Erlangen Earth Conference Series, pp. 249–264.

    Google Scholar 

  • Hutchings, P. A., and Murray, A., 1982. The establishment of polychaete populations to coral substrates at Lizard Island, Great Barrier Reef – an experimental approach. Australian Journal of Marine and Freshwater Research, 33, 1029–1037.

    CrossRef  Google Scholar 

  • Hutchings, P. A., and Peyrot–Clausade, M., 2002. The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia. Journal Experimental Marine Biology and Ecology, 269, 101–121.

    CrossRef  Google Scholar 

  • Hutchings, P. A., Ahyong, S., Byrne, M., Przeslawski, R., and Wörheide, G., 2007. Benthic invertebrates (excluding corals). In Johnson J., and Marshall P. (eds.), Climate Change and the Great Barrier Reef Great Barrier. Great Barrier Reef Marine Park Authority & Australian Greenhouse Office, pp. 309–356.

    Google Scholar 

  • Hutchings, P. A., Kiene, W. E., Cunningham, R. B., and Donnelly, C., 1992. Experimental Investigation of bioerosion at Lizard Island, Great Barrier Reef. Part 1. Patterns in the distribution and extent of non–colonial, boring communities. Coral Reefs, 11, 23–31.

    CrossRef  Google Scholar 

  • Hutchings, P. A., Peyrot-Clausade, M., and Osnorno, A., 2005. Influence of land runoff on rates and agents of bioerosion of coral substrates. Marine Pollution Bulletin, 51, 438–447.

    CrossRef  Google Scholar 

  • Johnson J., and Marshall, P. (eds.), 2007. Climate Change and the Great Barrier Reef. Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, 818 pp.

    Google Scholar 

  • Kiene, W. E., and Hutchings, P. A., 1994a. Long-term bioerosion of experimental coral substrates from Lizard Island, Great Barrier Reef. Proceedings of the 7th International Coral Reef Congress, 1, 397–403.

    Google Scholar 

  • Kiene, W. E., and Hutchings, P. A., 1994b. Experimental investigations on patterns in the rates of bioerosion at Lizard Island, Great Barrier Reef. Coral Reefs, 13(2), 91–98.

    CrossRef  Google Scholar 

  • Kleeman, K., 2008. Parapholas quadrizonata (Spengler, 1792) dominating dead-coral boring from the Maldives, Indian Ocean. In Wisshak, M., and Tapanila, L. (eds.), Current Developments in Bioerosion. Erlangen Conference Series, Berlin Heidelberg: Springer-Verlag, pp. 264–278.

    Google Scholar 

  • Kobluk, D. R., and Kahle, C. F., 1977. Bibliography of the endolithic (boring) algae and fungi and related geological processes. Bulletin Canadian Petrology and Geology, 25, 208–223.

    Google Scholar 

  • Kobluk, D. R., and Risk, M. J., 1977. Calcification of exposed filaments of endolithic algae, micrite envelope formation and sediment production. Journal of Sediment Petrology, 47, 517–528.

    Google Scholar 

  • Kobluk, D. R., and van Soest, R. W. M., 1989. Cavity-dwelling sponges in a southern Caribbean coral reef and their paleontological implications. Bulletin of Marine Science, 44(3), 1207–1235.

    Google Scholar 

  • Kohn, A. J., and Nybakken, J. W., 1975. Ecology of Conus on eastern Indian Ocean fringing reefs: diversity of species and resource utilization. “Marine Biology”: International Journal on Life in Oceans and Coastal Waters, 29(3), 211–234.

    Google Scholar 

  • Kohn, A. J., and White, J. K., 1977. Polychaete annelids of an intertidal reef limestone platform at Tanguisson Guam. Micronesica, 13(2), 199–216.

    Google Scholar 

  • Lam, K., Shin, P. K. S., and Hodgson, P., 2007. Severe bioerosion caused by an outbreak of corallivorous Drupella and Diadema at Hoi Ha Wan Marine Park, Hong Kong. Coral Reefs, 26(4), 893.

    CrossRef  Google Scholar 

  • López-Victoria, M., and Zea, S., 2004. Storm-mediated coral colonization by an excavating Caribbean sponge. Climate Research, 26, 251–256.

    CrossRef  Google Scholar 

  • López-Victoria, M., and Zea, S., 2005. Current trends of space occupation by encrusting excavating sponges on the Columbian coral reefs. Marine Ecology, 26, 33–41.

    CrossRef  Google Scholar 

  • MacGeachy, J. K., 1977. Factors controlling sponge boring in Barbados reef corals. Proceedings 3rd International Coral Reef Symposium, 2, 478–483.

    Google Scholar 

  • Márquez, J. C., Zea, S., and López-Victoria, M., 2006. Is competition for space between the encrusting excavating sponge Cliona tenuis and corals influenced by higher than normal temperatures? Boletin Investigaciones Marinasy Costeras, 35, 259–265.

    Google Scholar 

  • McClanahan, T. T., and Muthiga, N. A., 1988. Changes in Keynan coral reef structure and function due to exploitation. Hydrobiologia, 166, 269–276.

    CrossRef  Google Scholar 

  • McCloskey, L. R., 1970. The dynamics of the community associated with a marine scleractinian coral. Internationale Revue der gesamten Hydrobiologie, 55, 13–81.

    CrossRef  Google Scholar 

  • Mokady, O., Bonar, D. B., Arazi, G., and Loya, Y., 1993. Spawning and development of three coral-associated Lithophaga species in the Red Sea. Marine Biology, 115, 245–252.

    CrossRef  Google Scholar 

  • Morton, B., 1990. Corals and their bivalve borers – the evolution of a symbiosis. In Proceedings of a Memorial Symposium in Honour of Sir Charles Maurice Yonge (1899–1986). Edinburgh, 1986, The Bivalvia, pp. 11–46.

    Google Scholar 

  • Morton, B., and Blackmore, H., 2009. Seasonal variations in the density of and corallivory by Drupella rugosa and Cronia margariticola (Caenogastropoda: Muricidae) from the coastal waters of Hong Kong: (‘plagues’ or ‘aggregations’? Journal of Marine Biological Association UK, 89(1), 147–159.

    CrossRef  Google Scholar 

  • Morton, B., Blackmore, G., and Kwok, C. T., 2002. Corallivory and prey choice by Drupella rugosa (Gastropoda: Muricidae) in Hong Kong. Journal of Molluscan Studies, 68, 217–223.

    CrossRef  Google Scholar 

  • Neumann, A. C., 1966. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnology and Oceanography, 11(1), 92–108.

    CrossRef  Google Scholar 

  • Osorno, A., 2005. Impact d’une eutrophisation experimentale sur les processes de la bioerosion recifale, One Tree Island, Grande Barriere d’Australie. Docteur en sciences de l’Université de la Méditerranée, Aix-Marseille II, pp. 130.

    Google Scholar 

  • Osorno, A., Peyrot-Clausade, M., and Hutchings, P. A., 2005. Patterns and rates of erosion in dead Porites across the Great Barrier Reef (Australia) after 2 years and 4 years of exposure. Coral Reefs, 24, 292–303.

    CrossRef  Google Scholar 

  • Pari, N., Peyrot–Clausade, M., and Hutchings, P. A., 2002. Bioerosion of experimental substrates on high islands and atoll lagoons (French Polynesia) during 5 years of exposure. Journal Experimental Marine Biology and Ecology, 276, 109–127.

    CrossRef  Google Scholar 

  • Pari, N., Peyrot–Clausade, M., Le Campion–Alsumard, T., Hutchings, P. A., Chazottes, V., Golubic, S., Le Campion., and Fontaine, M. F., 1998. Bioerosion of experimental substrates on high islands and atoll lagoons (French Polynesia) after 2 years of exposure. Journal of Experimental Marine Ecology Progress Series, 166, 119–130.

    CrossRef  Google Scholar 

  • Pavans de Ceccatty, C., Thiney, Y., and Garrrone, R., 1970. Les bases ultrastructurales des communications intercellulaires dans les oscules de quelque éponges. Symposia of the Zoological Society of London, 25, 449–466.

    Google Scholar 

  • Peyrot-Clausade, M., Chabenet, P., Conand, C., Fontaine, M. F., Letourneur, Y., and Harmelin-Vivien, M., 2000. Sea urchin and fish bioerosion on La Reunion and Moorea Reefs. Bulletin of Marine Science, 66(2), 477–485.

    Google Scholar 

  • Peyrot-Clausade, M., Hutchings, P. A., and Richard, G., 1992. Successional patterns of macroborers in massive Porites at different stages of degradation on the barrier reef, Tiahura, Moorea, French Polynesia. Coral Reefs, 11, 161–166.

    CrossRef  Google Scholar 

  • Peyrot-Clausade, M., Le Campion-Alsumard, T., Harmelin-Vivien, M., Romano, J. C., Chazottes, V., Pari, N., and Le Campion, J., 1995. La bioérosion dans le cycle des carbonates: essays de quantification des processus en Polynésie française. Bulletin de la Societe Geologique de France, 166(1), 85–94.

    Google Scholar 

  • Pomponi, S. A., 1977. Etching cells of boring cells: an ultrastructural analysis. In Taylor, D. L. (ed.), Proceedings of Third International Coral Reef Symposium. Miami, Florida, Vol. 2, pp. 485–490.

    Google Scholar 

  • Pomponi, S. A., 1979a. Ultrastructure of cells associated with excavation of calcium carbonate substrates by boring sponges. Journal of Marine Biological Association UK, 59, 777–784.

    CrossRef  Google Scholar 

  • Pomponi, S. A., 1979b. Cytochemical studies of acid phosphatase in etching cells of boring sponges. Journal of Marine Biological Association UK, 59, 785–789.

    CrossRef  Google Scholar 

  • Pomponi, S. A., 1980. Cytological mechanisms of calcium carbonate excavation by boring sponges. International review of Cytology, 65, 310–319.

    CrossRef  Google Scholar 

  • Pratchett, M. S., Munday, M. S., Wilson, S. K., Graham, N. A. J., Cinner, J. E., Bellwood, D. R., Jones, G. P., Polunin, N. V. C., and McClanahan, T. R., 2008. Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences. Oceanography and Marine Biology: An Annual Review, 46, 251–296.

    CrossRef  Google Scholar 

  • Przeslawski, R., Ahyong, S., Byrne, M., Wörheide, G., and Hutchings P., 2008. Beyond corals and fish: the effects of climate change on non-coral benthic invertebrates of tropical reefs. Global Change Biology, 14, 1–23.

    CrossRef  Google Scholar 

  • Read, C. I., Bellwood, D. R., and Van Hererden, L., 2006. Ancient origins of Indo-Pacific coral reef fish biodiversity: a case study of the leopard wrasses (Labridae: Macropharyngodon). Molecular Phylogenetics and Evolution, 38, 808–819.

    CrossRef  Google Scholar 

  • Reaka-Kudla, M., Feingold, J. S., and Glynn, P., 1996. Experimental studies of rapid bioerosion of coral reefs in the Galapagos. Coral Reefs, 15, 101–107.

    Google Scholar 

  • Rice, M. E., 1969. Possible boring structures of sipunculids. American Zoologist, 9, 803–812.

    Google Scholar 

  • Rice, M. E., 1970. Asexual reproduction in a sipunculan worm. Science, 167, 1618–1620.

    CrossRef  Google Scholar 

  • Rice, M. E., and Macintyre, I. G. 1972. A preliminary study of sipunculan burrows in rock thin-sections. Caribbean Journal of Science, 12, 41–44.

    Google Scholar 

  • Rice, M. E., and Macintyre, I. G., 1982. Distribution of Sipuncula in the Coral reef Community. Carrie Bow Cay, Belize. The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay, Belize, I: Structure and Communities. In Rützler, K., and Macintyre, I. G. (eds.), Smithsonian Contribution Marine Sciences, No. 12, pp 311–320.

    Google Scholar 

  • Risk, M. J., and MacGeachy, J. K., 1978. Aspects of bioerosion of modern Caribbean reefs. Revista de Biología Tropical, 26(1), 85–105.

    Google Scholar 

  • Rose, C. S., and Risk, M. J., 1985. Increase in Cliona delitrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Marine Ecology, 4, 345–363.

    CrossRef  Google Scholar 

  • Rosell, D., and Uriz, M. J., 1997. Phylogenetic relationships within the excavating Hadromerida (Porifera), with a systematic revision. Cladistics, 13, 349–366.

    CrossRef  Google Scholar 

  • Rosen, B. R., 1984. Reef coral biogeography and climate through the late Cainozoic: just islands in the sun or a critical pattern of islands?. In Brenchley, P. (ed.), Fossils and Climate. New York: John Wiley and Sons Lt., pp. 201–260.

    Google Scholar 

  • Rotjan, R. D., and Lewis, S. M., 2005. Selective predation by parrotfishes on the reef coral Porites astroides. Marine Ecology Progress Series, 305, 193–201.

    CrossRef  Google Scholar 

  • Rotjan, R. D., and Lewis, S. M., 2006. Parrotfish abundance and selective corallivory on a Belizean coral reef. Journal of Experimental Marine Biology and Ecology, 335, 292–301.

    CrossRef  Google Scholar 

  • Rotjan, R. D., and Lewis, S. M., 2008. Impact of coral predators on tropical reefs. Marine Ecology Progress Series, 367, 73–91.

    CrossRef  Google Scholar 

  • Rotjan, R. D., Dimond, J. L., Thornhill, D. J., Leichter, J. J., Helmuth, B., Kemp, D. W., and Lewis, S. M., 2006. Chronic parrotfish grazing impedes coral recovery after bleaching. Coral Reefs, 25, 361–368.

    CrossRef  Google Scholar 

  • Russ, G. 1984. Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. 1. Levels of variability across the entire continental shelf. Marine Ecology Progress Series, 20, 23–34.

    CrossRef  Google Scholar 

  • Rützler, K., 1975. The role of burrowing sponges in bioerosion. Oecologia (Berlin), 19, 203–216.

    CrossRef  Google Scholar 

  • Rützler, K., 2003. Impact of crustose clionid sponges on Caribbean reef corals. Acta Geologica Hispanica, 37, 61–72.

    Google Scholar 

  • Rützler, K., and Reiger, G., 1973. Sponge burrowing: Fine structure of Cliona lampa penetrating calcareous substrata. Marine Biology, 21, 144–162.

    CrossRef  Google Scholar 

  • Sammarco, P. W., 1985. The Great Barrier vs the Caribbean comparisons of grazers, coral recruitment patterns and reef recovery. In Fifth International Coral Reefs Congress, Antenne Museum-EPHE, Tahiti, pp. 391–397.

    Google Scholar 

  • Sato-Okushi, W., and Okoshi, K., 1993. Microstructure of scallop and oyster shells infested with boring Polydora. Nippon Suisan Gakkaishi, 59, 1243–1247.

    CrossRef  Google Scholar 

  • Schönberg, C. H. L., 2008. A history of sponge erosion: from past myths and hypothesis to recent approaches. In Wisshak, M., and Tapanila, L. (eds.), Current Developments in Bioerosion. Erlangen Conference Series. Berlin Heidelberg: Springer-Verlag, pp. 165–202.

    CrossRef  Google Scholar 

  • Scott, P. J. B., 1988. Initial settlement behaviour and survivorship of Lithophaga bisulcata d’Orbigny (Mytilidae: Lithophaginae). Journal of Molluscan Studies, 54, 83–95.

    CrossRef  Google Scholar 

  • Shaffir, S., Gur, O., and Rinkevich, B., 2008. A Drupella cornus outbreak in the northern Gulf of Eilat and changes in coral prey. Coral Reefs, 27(2), 379.

    CrossRef  Google Scholar 

  • Sheppard, C. R. C., Spalding, M., Bradshaw, C., and Wilson, S., 2002. Erosion vs. recovery of coral reefs after 1998 El Niño: Chagos reefs, Indian Ocean. Ambio, 31, 40–48.

    Google Scholar 

  • Soliman, G. N., 1969. Ecological Aspects of Some Coral-Boring Gastropods and Bivalves of the Northwestern Red Sea. American Zoologist, 9, 887–894.

    Google Scholar 

  • Streelman, J. T., Alfaro, M., Westneat, M. W., Bellwood, D. R., and Karl, S. A., 2002. Evolutionary history of the parrotfishes: biogeography, ecomorphology and comparative diversity. Evolution, 56, 961–971.

    Google Scholar 

  • Sussman M., Willis, B. L., Victor, S., and Bourne, D. G., 2008. Coral pathogens identified for white syndrome (WS) epizootics in the Indo-Pacific. PLoS ONE, 3(6): e2393, 1–14.

    CrossRef  Google Scholar 

  • Tapanila, L., 2008. The endolithic guild: an ecological framework for residential cavities in hard substrates. In Wisshak, M., and Tapanila, L. (eds.), Current Developments in Bioerosion. Erlangen Conference Series. Berlin Heidelberg: Springer-Verlag, pp. 3–19.

    CrossRef  Google Scholar 

  • Tribollet, A., 2007. Dissolution of dead coral by euendolithic microorganisms across the northern Great Barrier Reef (Australia). Microbial Ecology, 55(4), 569–580.

    Google Scholar 

  • Tribollet, A., 2008. The boring microflora in modern coral reef ecosystems: a review of its roles. In Wisshak, M., and Tapanila, L. (eds.), Current Developments in Bioerosion. Erlangen Conference Series. Berlin Heidelberg: Springer-Verlag, pp. 67–94.

    CrossRef  Google Scholar 

  • Tribollet, A., and Payri, C., 2001. Bioerosion of the crustose coralline algae Hydrolithon onkodes by microborers in the coral reefs of Moorea, French Polynesia. Oceanology Acta, 24, 329–342.

    CrossRef  Google Scholar 

  • Tribollet, A., Decherf, G., Hutchings, P. A., and Peyrot–Clausade, M., 2002. Spatial large scale variability in bioerosion of experimental coral substrates on the GBR (Australia); Importance of microborers. Coral Reefs, 21, 424–432.

    Google Scholar 

  • Tudhope, A. W., and Risk, M. J., 1985. Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia. Journal of Sedimentary Petrology, 55, 440–447.

    Google Scholar 

  • Van Soest, R. W. M., Boury-Esnault, N., Hooper, J. N. A., Rützler, K., de Voogd, N. J., Alvarez, B., Hajdu, E., Pisera, A. B., Vacelet, J., Manconi, R., Schönberg, C., Janussen, D., Tabachnick, K. R., and Klautau, M., 2008. World Porifera database. Consulted on 2009-10-20, World Porifera Database (available online at http://www.marinespecies.org/porifera).

  • Warme, J. E., 1975. Borings as trace fossils, and the process of marine bioerosion. In Frey, R. W. (ed.), The study of trace fossils. Berlin Heidelberg New York: Springer, pp. 181–229.

    CrossRef  Google Scholar 

  • Wilkinson, C., 1983. Role of sponges in coral reef structural processes. In Barnes, D. J. (ed.), Perspectives on coral reefs. Australian Institute of Marine Science, Townsville, pp. 263–274.

    Google Scholar 

  • Wood, R., 1999. Reef Evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Xavier, J. R., Rachello-Dolmen P. G., Parra-Velandia, F., Schönberg C. H. L., Breeuwer J. A. J., and van Soest R. W. M. In press. Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Molecular Phylogeny and Evolution.

    Google Scholar 

  • Zottoli, R. A., and Carricker, M. R., 1974. Burrow morphology, tube formation, and microarchitecture of shell dissolution by the spionid polychaete Polydora websteri. Marine Biology, 27, 307–316.

    CrossRef  Google Scholar 

  • Zundelevich, A., Lazar, B., and Ilan, M., 2007. Chemical versus mechanical bioerosion of coral reefs by boring sponges- lessons from Pione cf. vastifica. Journal of Experimental Biology, 210, 91–96.

    CrossRef  Google Scholar 

Download references

Acknowledgments

The author would like to thank the following for providing references and comments on various drafts of this manuscript, Christine Schönberg, David Bellwood, Winston Ponder, Klaus Rützler, Ian Macintyre and Howard Choat and to David Hopley for the invitation to contribute to this book.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Hutchings, P. (2011). Bioerosion. In: Hopley, D. (eds) Encyclopedia of Modern Coral Reefs. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2639-2_5

Download citation