Skip to main content

Bioturbation

  • Reference work entry
Encyclopedia of Modern Coral Reefs

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition and introduction

Bioturbation refers to particle mixing within unconsolidated sediments through the activities of biological organisms, most commonly at, or close to, the water-sediment interface. The implications of this process go far beyond simply mixing the substrate as sediment particle preservation, food availability, and geochemical composition within the substrate are all affected. Bioturbation activity can also increase the size of the effective sediment-water interface contributing to enhanced chemical fluxes between the sediment and the water column. Some organisms enhance chemical exchange by flushing their burrows with the overlying waters, a process termed bioirrigation (Aller, 1977). Others, mainly macroinfauna (e.g., annelid worms – polychaetes), feed at depth and eject particles at the sediment-water interface (“conveyor-belt feeders”; Rhoads, 1974). The effective or total bioturbation in reefal environments largely depends on the kinds of organisms present...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Aller, R. C., 1977. The Influence of Macrobenthos on Chemical Diagenesis of Marine Sediments, New Haven, CT (USA): Yale University, 616.

    Google Scholar 

  • Aller, R. C., 1982. Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. The Journal of Geology, 90(1), 75–79.

    Article  Google Scholar 

  • Alongi, D. M., 1989. Benthic processes across mixed terrigenous-carbonate sedimentary facies on the central Great Barrier Reef continental shelf. Continental Shelf Research, 9(7), 629–663.

    Article  Google Scholar 

  • Berner, R. A., 1980. Early Diagenesis: A Theoretical Approach. Princeton, NJ: Princeton University Press, 256.

    Google Scholar 

  • Best, M. M. R., 2008. Contrast in preservation of bivalve death assemblages in siliciclastic and carbonate tropical shelf settings. Palaios, 23(12), 796–809.

    Article  Google Scholar 

  • Bradshaw, C., and Scoffin, T. P., 2001. Differential preservation of gravel-sized bioclasts in alpheid- versus callianassid-bioturbated muddy reefal sediments. Palaios, 16(2), 185–191.

    Article  Google Scholar 

  • Branch, G. M., and Pringle, A., 1987. The impact of the sand prawn Callianassa kraussi Stebbing on sediment turnover and on bacteria, meiofauna, and benthic microflora. Journal of Experimental Marine Biology and Ecology, 107(3), 219–235.

    Article  Google Scholar 

  • Callender, W. R. et al., 2002. Taphonomic trends along a forereef slope: lee stocking island, bahamas. II. time. Palaios, 17(1), 66–83.

    Article  Google Scholar 

  • Carroll, M., Kowalewski, M., Simões, M. G., and Goodfriend, G. A., 2003. Quantitative estimates of time-averaging in terebratulid brachiopod shell accumulations from a modern tropical shelf. Paleobiology, 29(3), 381–402.

    Article  Google Scholar 

  • Carter, R. M., Larcombe, P., Dye, J. E., Gagan, M. K., and Johnson, D. P., 2009. Long-shelf sediment transport and storm-bed formation by Cyclone Winifred, central Great Barrier Reef, Australia. Marine Geology, 267(3–4), 101–113.

    Article  Google Scholar 

  • Cummins, H., Powell, E. N., Stanton, R. J., and Staff, G., 1986. The rate of taphonomic loss in modern benthic habitats: how much of the potentially preservable community is preserved? Palaeogeography, Palaeoclimatology, Palaeoecology, 52(3–4), 291–320.

    Article  Google Scholar 

  • Flessa, K. W., Cutler, A. H., and Meldahl, K. H., 1993. Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology, 19(2), 266–286.

    Google Scholar 

  • Gagan, M. K., Johnson, D. P., and Carter, R. M., 1988. The Cyclone Winifred storm bed, central Great Barrier Reef shelf, Australia. Journal of Sedimentary Research, 58(5), 845–856.

    Google Scholar 

  • Grant, J., 1983. The relative magnitude of biological and physical sediment reworking in an intertidal community. Journal of Marine Research, 41(4), 673–689.

    Article  Google Scholar 

  • Greenstein, B. J., 1991. An integrated study of echinoid taphonomy; predictions for the fossil record of four echinoid families. Palaios, 6(6), 519–540.

    Article  Google Scholar 

  • Greenstein, B. J., 1993. Is the fossil record of regular echinoids really so poor? A comparison of living and subfossil assemblages. Palaios, 8(6), 587–601.

    Article  Google Scholar 

  • Hannides, A. K., Dunn, S. M., and Aller, R. C., 2005. Diffusion of organic and inorganic solutes through macrofaunal mucus secretions and tube linings in marine sediments. Journal of Marine Research, 63(5), 957–981.

    Article  Google Scholar 

  • Hauser, I., Oschmann, W., and Gischler, E., 2009. Taphonomic signatures on modern caribbean bivalve shells as indicators of environmental conditions (Belize, Central America). Palaios, 23(9), 586–600.

    Article  Google Scholar 

  • Holmer, M., and Heilskov, A. C., 2008. Distribution and bioturbation effects of the tropical alpheid shrimp Alpheus macellarius in sediments impacted by milkfish farming. Estuarine, Coastal and Shelf Science, 76(3), 657–667.

    Article  Google Scholar 

  • Kidwell, S. M., 2001. Preservation of species abundance in marine death assemblages. Science, 294(5544), 1091–1094.

    Article  Google Scholar 

  • Kidwell, S. M., Best, M. M. R., and Kaufman, D. S., 2005. Taphonomic trade-offs in tropical marine death assemblages: differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies. Geology, 33(9), 729–732.

    Article  Google Scholar 

  • Kosnik, M. A., Hua, Q., Jacobsen, G. E., Kaufman, D. S., and Wust, R. A. J., 2007. Sediment mixing and stratigraphic disorder revealed by the age-structure of Tellina shells in Great Barrier Reef sediment. Geology, 35(9), 811–814.

    Article  Google Scholar 

  • Kosnik, M. A., Hua, Q., Kaufman, D. S., and Wust, R. A., 2009. Taphonomic bias and time-averaging in tropical molluscan death assemblages: differential shell half-lives in Great Barrier Reef sediment. Paleobiology, 35(4), 565–586.

    Article  Google Scholar 

  • Kosnik, M. A., and Kaufman, D. S., 2008. Identifying outliers and assessing the accuracy of amino acid racemization measurements for geochronology: II. Data screening. Quaternary Geochronology, 3(4), 328–341.

    Article  Google Scholar 

  • Kosnik, M. A., Kaufman, D. S., and Hua, Q., 2008. Identifying outliers and assessing the accuracy of amino acid racemization measurements for geochronology: I. Age calibration curves. Quaternary Geochronology, 3(4), 308–327.

    Article  Google Scholar 

  • Kowalewski, M., 1996. Time-averaging, overcompleteness, and the geological record. The Journal of Geology, 104(3), 317–326.

    Article  Google Scholar 

  • Krantzberg, G., 1985. The influence of bioturbation on physical, chemical and biological parameters in aquatic environments: a review. Environmental Pollution Series A, Ecological and Biological, 39(2), 99–122.

    Article  Google Scholar 

  • Kristensen, E., 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia, 426(1), 1–24.

    Article  Google Scholar 

  • Meldahl, K. H., 1987. Sedimentologic and taphonomic implications of biogenic stratification. Palaios, 2(4), 350–358.

    Article  Google Scholar 

  • Meldahl, K. H., Flessa, K. W., and Cutler, A. H., 1997. Time-averaging and postmortem skeletal survival in benthic fossil assemblages: quantitative comparisons among Holocene environments. Paleobiology, 23(2), 207–229.

    Google Scholar 

  • Moran, P. J., 1992. Preliminary observations of the decomposition of crown-of-thorns starfish, Acanthaster planci (L.). Coral Reefs, 11(2), 115–118.

    Article  Google Scholar 

  • Myers, A. C., 1977. Tube-worm-sediment relationship of Diopatra cuprea (Polychaeta: Onuphidae). Marine Biology, 17(4), 350–356.

    Article  Google Scholar 

  • Nedwell, D. B., and Blackburn, T. H., 1987. Anaerobic metabolism in lagoon sediments from Davies Reef, Great Barrier Reef. Estuarine, Coastal and Shelf Science, 25(3), 347–353.

    Article  Google Scholar 

  • O’Leary, M. J., Perry, C. T., Beavington-Penney, S. J., and Turner, J. R., 2009. The significant role of sediment bio-retexturing within a contemporary carbonate platform system: implications for carbonate microfacies development. Sedimentary Geology, 219(1–4), 169–179.

    Article  Google Scholar 

  • Pandolfi, J. M., 1992. A palaeobiological examination of the geological evidence for recurring outbreaks of the crown-of-thorns starfish, Acanthaster planci (L.). Coral Reefs, 11(2), 87–93.

    Article  Google Scholar 

  • Perry, C. T., 1998. Grain susceptibility to the effects of microboring: implications for the preservation of skeletal carbonates. Sedimentology, 45(1), 39–51.

    Article  Google Scholar 

  • Pillay, D., Branch, G., and Forbes, A., 2007. Experimental evidence for the effects of the thalassinidean sandprawn Callianassa kraussi on macrobenthic communities. Marine Biology, 152(3), 611–618.

    Article  Google Scholar 

  • Pischedda, L., Poggiale, J., Cuny, P., and Gilbert, F., 2008. Imaging oxygen distribution in marine sediments. The importance of bioturbation and sediment heterogeneity. Acta Biotheoretica, 56(1), 123–135.

    Article  Google Scholar 

  • Rhoads, D. C., 1974. Organism-sediment relations on the muddy sea floor. Oceanography and Marine Biology, 12, 263–300.

    Google Scholar 

  • Riddle, M. J., 1988. Cyclone and bioturbation effects on sediments from coral reeflagoons. Estuarine, Coastal and Shelf Science, 27(6), 687–695.

    Article  Google Scholar 

  • Robbins, J. A., 1986. A model for particle-selective transport of tracers in sediments with conveyor belt deposit feeders. Journal of Geophysical Research, 91, 8542–8558.

    Article  Google Scholar 

  • Scoffin, T. P., 1992. Taphonomy of coral reefs: a review. Coral Reefs, 11(2), 57–77.

    Article  Google Scholar 

  • Shinn, E. A., 1968. Burrowing in recent lime sediments of Florida and the Bahamas. Journal of Paleontology, 42(4), 879–894.

    Google Scholar 

  • Soetaert, K., Herman, P. M. J., and Middelburg, J. J., 1996. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica et Cosmochimica Acta, 60(6), 1019–1040.

    Article  Google Scholar 

  • Staff, G. M., Stanton, R. J., Powell, E. N., and Cummins, H., 1986. Time-averaging, taphonomy, and their impact on paleocommunity reconstruction: death assemblages in Texas bays. Geological Society of America Bulletin, 97(4), 428–443.

    Article  Google Scholar 

  • Suchanek, T. H., 1983. Control of seagrass communities and sediment distribution by Callianassa (Crustacea, Thalassinidea) bioturbation. Journal of Marine Research, 41(2), 281–298.

    Article  Google Scholar 

  • Tomasovych, A., and Zuschin, M., 2009. Variation in brachiopod preservation along a carbonate shelf-basin transect (Red Sea and Gulf of Aden): Environmental sensitivity of taphofacies. Palaios, 24(10), 697–716.

    Article  Google Scholar 

  • Tudhope, A. W., and Risk, M. J., 1985. Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia. Journal of Sedimentary Research, 55(3), 440–447.

    Google Scholar 

  • Tudhope, A. W., and Scoffin, T. P., 1984. The effects of Callianassa bioturbation on the preservation of carbonate grains in Davies Reef Lagoon, Great Barrier Reef, Australia. Journal of Sedimentary Research, 54(4), 1091–1096.

    Google Scholar 

  • Walbran, P. D., 1996. 210 Pb and 14 C as indicators of callianassid bioturbation in coral reef sediment. Journal of Sedimentary Research, 66(1), 259–264.

    Google Scholar 

  • Walbran, P. D. et al., 1989a. Crown-of-thorns starfish outbreaks on the Great Barrier Reef: a geological perspective based upon sediment record. Coral Reefs, 8, 67–78.

    Article  Google Scholar 

  • Walbran, P. D., Henderson, R. A., Jull, A. J. T., and Head, M. J., 1989b. Evidence from sediments of long-term Acanthaster planci predation on corals of the Great Barrier Reef. Science, 245(4920), 847–850.

    Article  Google Scholar 

  • Ziebis, W., Forster, S., Huettel, M., and Jørgensen, B. B., 1996. Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed. Nature, 382(6592), 619–622.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Wust, R.A.J. (2011). Bioturbation. In: Hopley, D. (eds) Encyclopedia of Modern Coral Reefs. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2639-2_49

Download citation

Publish with us

Policies and ethics