Skip to main content

Binding Organisms

  • Reference work entry

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Definition and introduction

Coral reef environments host many organisms that actively precipitate mineral matter and encrust or bind sedimentary particles together. In reef systems, waves, storms, and boring organisms constantly produce loose material (mostly skeletal debris), but reef organisms often need firm substrates on which to settle. Binding and encrusting organisms such as encrusting sponges (Knott et al., 2006; Turon et al., 1998), foraminifers (Machado and Moraes, 2002; Perrin, 2009), or algae stabilize the loose carbonate grains and thus cement the reef body. The most important encrusting organisms of modern reefs are the light-dependent calcareous red algae (known also as coralline algae), but many other calcareous encrusting organisms exist including polychaetes, phoronid worms, chaetognaths (arrow worms), holothurianschordates (ascidians), foraminifera, corals, bivalves, algae, and bryozoans. These organisms bind sedimentary particles to create a living framework or...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-2639-2_48
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   549.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-2639-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Bibliography

  • Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P., and Burch, I. W., 2006. Stromatolite reef from the Early Archaean era of Australia. Nature, 441(7094), 714–718.

    CrossRef  Google Scholar 

  • Awramik, S. M., and Riding, R., 1988. Role of algal eukaryotes in subtidal columnar stromatolite formation. Proceedings of the National Academy of Sciences USA, 85, 1327–1329.

    CrossRef  Google Scholar 

  • Bailey-Brock, J. H., Kirtley, D. W., Nishi, E., and Pohler, S. M. J., 2009. Neosabellaria vitiensis, n. sp. (Annelida: Polychaeta: Sabellariidae), from Shallow Water of Suva Harbor, Fiji 1. Pacific Science, 61(3), 399–406.

    CrossRef  Google Scholar 

  • Ballantine, D. L., Bowden-Kerby, A., and Aponte, N. E., 2000. Cruoriella rhodoliths from shallow-water back reef environments in La Parguera, Puerto Rico (Caribbean Sea). Coral Reefs, 19(1), 75–81.

    CrossRef  Google Scholar 

  • Bianchi, C. N., Aliani, S., and Morri, C., 1995. Present-day serpulid reefs, with reference to an on-going research project on Ficopomatus enigmaticus. In Lathuiliere, B., and Geister, J. (eds.), Coral Reefs in the Past, Present and Future. Luxembourg: Publ. Serv. Geol. Lux., pp. 61–65.

    Google Scholar 

  • Bonar, D. B., 1972. Feeding and tube construction in chone mollis Bush (polychaeta, sabellidae). Journal of Experimental Marine Biology and Ecology, 9(1), 1–18.

    CrossRef  Google Scholar 

  • Burns, B. P., Goh, F., Allen, M., and Neilan, B. A., 2004. Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environmental Microbiology, 6(10), 1096–1101.

    CrossRef  Google Scholar 

  • Chen, C., and Dai, C.-F., 2009. Subtidal sabellarid reefs in Hualien, eastern Taiwan. Coral Reefs, 28(1), 275.

    CrossRef  Google Scholar 

  • Davies, M. S., Hawkins, J., Blaxter, J. H. S., Southward, A. J., and Tyler, P. A., 1998. Mucus from marine molluscs, Advances in Marine Biology. Academic Press, pp. 1–71.

    Google Scholar 

  • Davies, M. S., Hawkins, S. J., and Jones, H. D., 1992. Pedal mucus and its influence on the microbial food supply of two intertidal gastropods, Patella vulgata L. and Littorina littorea (L.). Journal of Experimental Marine Biology and Ecology, 161(1), 57–77.

    CrossRef  Google Scholar 

  • Dean, W. E., and Eggleston, J. R., 1975. Comparative anatomy of marine and freshwater algal reefs, Bermuda and Central New York. Geological Society of America Bulletin, 86(5), 665–676.

    CrossRef  Google Scholar 

  • Dill, R. F., Shinn, E. A., Jones, A. T., Kelly, K., and Steinen, R. P., 1986. Giant subtidal stromatolites forming in normal salinity waters. Nature, 324(6092), 55–58.

    CrossRef  Google Scholar 

  • Dravis, J. J., 1983. Hardened subtidal stromatolites, Bahamas. Science, 219(4583), 385–386.

    CrossRef  Google Scholar 

  • Fischer, R., Pernet, B., and Reitner, J., 2000. Organomineralization of cirratulid annelid tubes-fossil and recent examples. Facies, 42(1), 35–49.

    CrossRef  Google Scholar 

  • Grotzinger, J. P., and Knoll, A. H., 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27, 313–358.

    CrossRef  Google Scholar 

  • Kirtley, D. W., 1992. The Sabellariid reefs in the bay of Mont Saint Michel, France; ecology, geomorphology, sedimentology, and geologic implications, 1. Florida Oceanographic Society, 166pp.

    Google Scholar 

  • Kirtley, D. W., 1994. A review and taxonomic revision of the family Sabellariidae Johnston, 1865 (Annelida; Polychaeta). Vero Beach, Florida: Sabecon, 223pp.

    Google Scholar 

  • Knott N. A., Underwood A. J., Chapman M. G., and Glasby, T. M., 2006. Growth of the encrusting sponge Tedania anhelans (Lieberkuhn) on vertical and on horizontal surfaces of temperate subtidal reefs. Marine and Freshwater Research, 57, 95–104.

    CrossRef  Google Scholar 

  • Krasnow, L. D., and Taghon, G. L., 1997. Rate of tube building and sediment particle size selection during tube construction by the tanaid crustacean, Leptochelia dubia. Estuaries and Coasts, 20(3), 534–546.

    CrossRef  Google Scholar 

  • Lemos, R. M. T., Silva, C. G., and Spadini, A. R., 1994. Estratigrafia e estromatólitos recentes da Lagoa Salgada, RJ, Congresso Brasileiro de Geologia, 38, Camboriú/SC,1994, SBG. Anais, 3, 258–260.

    Google Scholar 

  • Logan, B. W., 1961. Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia. The Journal of Geology, 69(5), 517–533.

    CrossRef  Google Scholar 

  • Main, M. B., and Nelson, W. G., 1988. Sedimentary characteristics of sabellariid worm reefs (Phragmatopoma lapidosa Kinberg). Estuarine, Coastal and Shelf Science, 26(1), 105–109.

    CrossRef  Google Scholar 

  • Mallela, J., 2007. Coral reef encruster communities and carbonate production in cryptic and exposed coral reef habitats along a gradient of terrestrial disturbance. Coral Reefs, 26(4), 775–785.

    CrossRef  Google Scholar 

  • Machado, A. J., and Moraes, S. S., 2002. A note on the occurrence of the encrusting foraminifera Homotrema rubrum in reef sediments from two distinctive hydrodynamic settings. Anais da Academia Brasileira de Ciências, 74, 727–735.

    CrossRef  Google Scholar 

  • Maneveldt, G., Wilby, D., Potgieter, M., and Hendricks, M., 2006. The role of encrusting coralline algae in the diets of selected intertidal herbivores. Journal of Applied Phycology, 18, 619–627.

    CrossRef  Google Scholar 

  • Naylor, L. A., and Viles, H. A., 2000. A temperate reef builder: an evaluation of the growth, morphology and composition of Sabellaria alveolata (L.) colonies on carbonate platforms in South Wales. Geological Society, London, Special Publications, 178(1), 9–19.

    CrossRef  Google Scholar 

  • Pandolfi, J. M., Ross Robertson, D., and Kirtley, D. W., 1998. Roles for worms in reef-building. Coral Reefs, 17(2), 120.

    CrossRef  Google Scholar 

  • Perrin, C., 2009. Solenomeris: from biomineralization patterns to diagenesis. Facies, 55, 501–522.

    CrossRef  Google Scholar 

  • Perry, C. T., 2000. Factors controlling sediment preservation on a north Jamaican fringing reef: a process-based approach to microfacies analysis. Journal of Sedimentary Research, 70(3), 633–648.

    CrossRef  Google Scholar 

  • Perry, C. T., 1999. Reef framework preservation in four contrasting modern reef environments, Discovery Bay, Jamaica. Journal of Coastal Research, 15(3), 796–812.

    Google Scholar 

  • Rasmussen, K. A., Macintyre, I. G., and Prufert, L., 1993. Modern stromatolite reefs fringing a brackish coastline, Chetumal Bay, Belize. Geology, 21(3), 199–202.

    CrossRef  Google Scholar 

  • Rasser, M., and Riegl, B., 2002. Holocene coral reef rubble and its binding agents. Coral Reefs, 21(1), 57–72.

    Google Scholar 

  • Riemann, F., and Helmke, E., 2002. Symbiotic relations of sediment-agglutinating nematodes and bacteria in detrital habitats: the enzyme-sharing concept. Marine Ecology, 23(2), 93–113.

    CrossRef  Google Scholar 

  • Turon, X., Tarjuelo, I., and Uriz, M. J., 1998. Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defence. Functional Ecology, 12, 631–639

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Wust, R.A.J. (2011). Binding Organisms. In: Hopley, D. (eds) Encyclopedia of Modern Coral Reefs. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2639-2_48

Download citation