Skip to main content

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Aronson, R. B., and Precht, W. F., 1997. Stasis, biological disturbance, and community structure of a Holocene coral reef. Paleobiology, 23, 326–346.

    Google Scholar 

  • Babcock, R. C., Bull, G. D., Harrison, P. L., Heyward, A. J., Oliver, J. K., Wallace, C. C., and Willis, B. L., 1986. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Marine Biology, 90, 379–394.

    Google Scholar 

  • Barnes, D. J., 1972. The structure and formation of growth-ridges in scleractinian coral skeletons. Proceedings of the Royal Society of London B, 182, 331–350.

    Google Scholar 

  • Baron-Szarbo, R. C., 2006. Corals of the K/T- boundary: scleractinian corals of the suborders Astrocoeniina, Faviina, Rhipiogyrina and Amphiastraeina. Journal of Systematic Palaeontology, 4, 1–108.

    Google Scholar 

  • Berklemans, R., De’ath, G., Kininmonth, S., and Skirving, W. J., 2004. A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions. Coral Reefs, 23, 74–83.

    Google Scholar 

  • Boschma, H., 1961. Acropora Oken, 1815 (Anthozoa, Madreporaria): proposed validation under the plenary powers. Bulletin of Zoological Nomenclature, 20, 319–330.

    Google Scholar 

  • Brown, B. E., 1997. Coral bleaching: causes and consequences Coral Reefs 16, S129–S138.

    Google Scholar 

  • Bythell, J. C., Gladfelter, E., and Bythell, M., 1993. Chronic and catastrophic natural mortality of three common Caribbean corals. Coral Reefs, 12, 143–152.

    Google Scholar 

  • Chen, C. A., Wallace, C. C., and Wolstenholme, J., 2002. Analysis of mitochondrial 12S RNA gene supports the two-clade hypothesis of evolutionary history of scleractinian corals. Molecular Phylogenetics and Evolution, 23, 137–149.

    Google Scholar 

  • Chen, I.-P., Tang, C.-Y., Chiou C.-Y., Hsu, J.-H., Wei, N. V., Wallace, C. C., Muir, P., Wu, H., and Chen, C. A., 2009. Comparative analyses of coding and noncoding DNA regions indicate that Acropora (Anthozoa: Scleractina) possesses a similar evolutionary tempo of nuclear vs. mitochondrial genomes as in plants. Marine Biotechnology, 11, 141–152.

    Google Scholar 

  • China, W. E., 1983. Opinion 674: Acropora Oken, 1815 (Anthozoa, Madreporaria): validated under the plenary powers. Bulletin of Zoological Nomenclature, 18, 334–335.

    Google Scholar 

  • Connell, J. J., Hughes, T. P., Wallace, C. C., Tanner, J. E., Harms, K. E., and Kerr, A. M., 2004. A long-term study of competition and diversity of corals. Ecological Monographs, 74, 179–210.

    Google Scholar 

  • Done, T. J., 1999. Coral community adaptability to environmental change at the scales of regions, reefs and reef zones. American Zoologist, 39, 66–79.

    Google Scholar 

  • Done, T., Turak, E., Wakefield, M., DeVantier, L., McDonald, A., and Fisk, D., 2007. Decadal changes in turbid-water coral communities at Pandora Reef: loss of resilience or too soon to tell? Coral Reefs, 26, 789–815.

    Google Scholar 

  • Fabricius, K. E., 2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin, 50, 125–146.

    Google Scholar 

  • Fabricius, K., and Wolanski, E., 2000. Rapid smothering of coral reef organisms by muddy marine snow. Estuarine, Coastal and Shelf Science, 50, 115–120.

    Google Scholar 

  • Gladfelter, E. 2008. Coral skeletons: from calcium carbonate to intricate architecture. 11th International Coral Reef Symposium, Abstracts, p. 15.

    Google Scholar 

  • Hellberg, M. E., 2006. No variation and low substitution rates in coral mtDNA despite high nuclear variation. BMC Evolutionary Biology, 6, 24.

    Google Scholar 

  • le Goff-Vitry, M. C., Rogers, A. D., and Baglow, D., 2004. A deep-sea slant on the molecular phylogeny of the Scleractinia. Molecular phylogenetics and evolution. Molecular Phylogenetics and Evolution, 30, 167–177.

    Google Scholar 

  • Linneaus, 1758. Systema Naturae (edition 10) 1, 1–824 Laurentii Salvii, Holmiae.

    Google Scholar 

  • Marshall, P. A., and Baird, A. H., 2006. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs, 19, 155–163.

    Google Scholar 

  • McClanahan, T. R., Buddemeir, R. W., Hoeegh-Guildberg, O., and Sammarco, P., 2008. Projecting the current trajectory of coral reefs. In Polunin, N. V. C., (ed.), Aquatic Ecosystems. Cambridge: Cambridge University Press, pp. 242–260.

    Google Scholar 

  • Munday, P. L., 2002. Does habitat availability determine geographical-scale abundance of coral-dwelling fishes? Coral Reefs, 21, 105–116.

    Google Scholar 

  • Nothdurft, L. D., and Webb, G. E., 2007. Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea and Porites: constraints on spatial resolution in geochemical sampling. Facies, 53, 1–26.

    Google Scholar 

  • Oken, L., 1815. Steinkorallen. Lehrbuch Naturgesch, 3, 59–74.

    Google Scholar 

  • Richards, Z. T., van Oppen, M. J. H., Wallace, C. C., Willis, B. L., and Miller, D. J., 2008. Some rare Indo-Pacific coral species are probable hybrids. PLoS ONE, 3(9), e3240. doi:10.1371/journal.pone.0003240.

    Google Scholar 

  • Roff, G., Dove, S. G., and Dunn, S. R., 2009. Mesenterial filaments make a clean sweep of substrated for coral growth. Coral Reefs, 28, 70.

    Google Scholar 

  • Romano, S. L., and Cairns, S. D., 2000. Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bulletin of Marine Science, 67, 1043–1068.

    Google Scholar 

  • Roniewicz, E., 1996. The key role of skeletal microsctructure in recognizing high-rank scleractinian taxa in the stratographic record. Palaeontological Society Papers, 1, 187–206.

    Google Scholar 

  • Rosen, B. R., 1986. Modular growth and form of corals: a matter of metamers? Philosophical Transactions of the Royal Society of London B, 313, 115–142.

    Google Scholar 

  • Schuster, F., 2003. Oligocene and Miocene examples of Acropora-dominated palaeoenvironments: Mesohellenic Basin (NW Greece) and northern Gulf of Suez (Egypt). In Proceedings 9th International Coral Reef Symposium, Bali, Indonesia, Vol. 1, pp. 199–203.

    Google Scholar 

  • Van Oppen, M. J. H., Willis, B. L., and Miller, D. 1999. Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. Proceedings of the Royal Society of London B, 266, 179–183.

    Google Scholar 

  • Van Oppen, M. J. H., Willis, B. L., van Vugt, H., and Miller, D., 2000. Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Molecular Ecology, 9, 1363–1373.

    Google Scholar 

  • Van Oppen, M., Mc Donald, B., Willis, B., and Miller, D., 2001. The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Molecular Biology and Evolution, 18, 1315–1329.

    Google Scholar 

  • Van Oppen, M. J. H., Willis, B. L., van Rheede, T., and Miller, D., 2002. Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permiable boundaries in corals. Molecular Ecology, 11, 1363–1376.

    Google Scholar 

  • Veron, J. E. N., and Wallace, C. C., 1984. Scleractinia of Eastern Australia. Part V. Family Acroporidae. Townsville: Australian Institute of Marine Science.

    Google Scholar 

  • Vollmer, S. V., and Palumbi, S. R., 2002. Hybridization and the evolution of reef coral diversity. Science, 296, 2023–2025.

    Google Scholar 

  • Wallace, C. C., 1999. Staghorn Corals of the World: A Revision of the Coral Genus Acropora (Scleractinia; Astrocoeniina; Acroporidae) Worldwide, with Emphasis on Morphology, Phylogeny and Biogeography. Melbourne: CSIRO.

    Google Scholar 

  • Wallace, C. C., 2001. Wallace’s line and marine organisms: the distribution of staghorn corals (Acropora) in Indonesia. In Metcalf, I. (ed.), Faunal and Floral Migrations and Evolution in SE Asia–Australasia. Rotterdam: Balkema, pp. 168–178.

    Google Scholar 

  • Wallace, C. C., 2008. New species and records from the Eocene of England and France for the reef-building coral genus Acropora (Scleractinia; Astrocoeniina; Acroporidae). Journal of Paleontology, 82, 313–328.

    Google Scholar 

  • Wallace, C. C., and Rosen, B. R. R., 2006. Diverse staghorn corals (Acropora) in high-latitude Eocene assemblages: implications for the evolution of modern diversity patterns of reef corals. Proceedings of the Royal Society B, 273, 975–982.

    Google Scholar 

  • Wallace, C. C., and Zahir, H., 2007. The “Xarifa” expedition and the atolls of the Maldives, 50 years on. Coral Reefs, 26, 3–5.

    Google Scholar 

  • Wallace, C. C., Richards, Z., and Suharsono, 2001. Regional distribution patterns of Acropora and their use in the conservation of coral reefs in Indonesia. Indonesian Journal of Marine and Coastal Resources, 4, 1–19.

    Google Scholar 

  • Wallace, C. C, Chen, C. A. C., Fukami, H., and Muir, P. R., 2007. Recognition of separate genera within Acropora based on new morphological, reproductive and genetic evidence from A. togianensis, and elevation of the subgenus Isopora Studer, 1878 to genus (Scleractinia: Astrocoeniidae; Acroporidae). Coral Reefs, 26, 231–239.

    Google Scholar 

  • Wells, J. W., 1956. Scleractinia. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part F (Coelenterata), Lawrence: The University of Kansas Press, pp. F328–F444.

    Google Scholar 

  • Wilkinson, C. R. (ed.), (1998, 2000, 2002, 2004, 2008) Status of the Coral Reefs of the World. Townsville: Australian Institute of Marine Science.

    Google Scholar 

  • Williams, E. H., Jr., Bartels, P. J., and Bunkley-Williams, L., 1999. Predicted disappearance of coral-reef ramparts: a direct result of major ecological disturbances. Global Change Biology, 5, 839–845.

    Google Scholar 

  • Wolstenholme, J. K., Wallace, C. C., and Chen, C., 2003. Species boundaries within the Acropora humilis species group (Cnidaria; Scleractinia): a morphological and molecular interpretation of evolution. Coral Reefs, 22, 155–166.

    Google Scholar 

Download references

Acknowledgments

Dr. P.R. Muir of Museum of Tropical Queensland for preparing figures and reviewing text.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Wallace, C.C. (2011). Acropora. In: Hopley, D. (eds) Encyclopedia of Modern Coral Reefs. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2639-2_271

Download citation

Publish with us

Policies and ethics