Encyclopedia of Modern Coral Reefs

2011 Edition
| Editors: David Hopley

Swathe Mapping

  • Robin J. Beaman
Reference work entry
DOI: https://doi.org/10.1007/978-90-481-2639-2_154


Multibeam Mapping; Multibeam Sonar Mapping


Swathe mapping. A technology used for the detailed 3D mapping of the seabed utilizing a vessel-mounted multibeam sonar that transmits a fan, or swathe, of acoustic energy across the ship track; then resolves multiple depth points across the swathe based upon the slant range and elevation angle of reflected echoes from the seafloor. Lidar is a similar technology to multibeam but using airborne laser bathymetry to swathe map shallow clear waters.

Multibeam sonar

Singlebeam echo sounders have been applied routinely for many years to collect bathymetric or depth data from the world’s oceans. This acoustic technique relies on a vessel-mounted transducer to generate a single acoustic pulse directed toward the seabed underneath the vessel. The echo sounder then calculates a depth measurement based on the travel time for the reflected seafloor echo to return to the receiver and speed of sound through water (Kunzig, 2000). During...

This is a preview of subscription content, log in to check access.


  1. Beaman, R. J., Webster, J. M., and Wust, R. A. J., 2008. New evidence for drowned shelf edge reefs in the Great Barrier Reef, Australia. Marine Geology, 247, 17–34, doi: 10.1016/j.margeo.2007.08.001.CrossRefGoogle Scholar
  2. Blacquiere, G., and van Woerde, K., 1998. Multibeam Echosounding: Beamforming versus Interferometry, Oceanology International 98 – The Global Ocean, 10–13 March 1998. Brighton, pp. 1–5.Google Scholar
  3. Brock, J. C., Palaseanu-Lovejoy, M., Wright, C. W., and Nayegandhi, A., 2008. Patch-reef morphology as a proxy for Holocene sea-level variability, Northern Florida Keys, USA. Coral Reefs, 27, 555–568, doi: 10.1007/s00338-008-0370-y.CrossRefGoogle Scholar
  4. Finkl, C. W., Benedet, L., and Andrews, J. L., 2005. Interpretation of seabed geomorphology based on spatial analysis of high-density airborne laser bathymetry. Journal of Coastal Research, 21(3), 501–514, doi: 10.2112/05-756A.1.CrossRefGoogle Scholar
  5. Grigg, R. W., Grossman, E. E., Earle, S. A., Gittings, S. R., Lott, D., and McDonough, J., 2002. Drowned reefs and antecedent karst topography, Au’au Channel, S.E. Hawaiian Islands. Coral Reefs, 21, 73–82, doi: 10.1007/s00338-001-0203-8.Google Scholar
  6. Guenther, G. C., 2007. Airborne lidar bathymetry. In Maune, D. F. (ed.), Digital Elevation Model Technologies and Applications: The DEM Users Manual, 2nd edn. Bethesda, USA: American Society for Photogrammetry and Remote Sensing (ASPRS), pp. 253–320.Google Scholar
  7. Kunzig, R., 2000. Mapping the Deep: The Extraordinary Story of Ocean Science. New York: W.W. Norton, pp. 345.Google Scholar
  8. Lekkerkerk, H.-J., 2006. Remote Sensing: Underwater. GEOInformatics, March(2): 32–35.Google Scholar
  9. Mayer, L. A., 2006. Frontiers in seafloor mapping and visualization. Marine Geophysical Researches, 27, 7–17, doi: 10.1007/s11001-005-0267-x.CrossRefGoogle Scholar
  10. Webster, J. M., Beaman, R. J., Bridge, T., Davies, P. J., Byrne, M., Williams, S., Manning, P., Pizarro, O., Thornborough, K., Woolsey, K., Thomas, A., and Tudhope, S., 2008. From corals to canyons: The Great Barrier Reef margin. EOS, 89(24), 217–218.CrossRefGoogle Scholar
  11. Wille, P. C., 2005. Sound Images of the Ocean in Research and Monitoring. Berlin, Germany: Springer, p. 471.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Robin J. Beaman
    • 1
  1. 1.School of Earth and Environmental SciencesJames Cook UniversityCairnsAustralia