Skip to main content

Barrier Film Development for Flexible OLED

  • Living reference work entry
  • First Online:
Handbook of Organic Light-Emitting Diodes

Abstract

This chapter describes different approaches to make engineered films based on polymeric substrates with ultralow water and oxygen permeation. These films are compatible with encapsulation of OLED devices for display and lighting applications. A survey of current technologies and modes of application of these films is presented. The properties of substrates and planarization layers necessary to achieved ultra-barrier performance are discussed. Advantages and limitation of deposition techniques used in the formation of the inorganic films are discussed by presenting and comparing physical vapor deposition (PVD) by sputtering, plasma-enhanced chemical vapor deposition (PECVD), and atomic layer deposition (ALD). An innovative approach based on the deposition of an inorganic film by wet method is discussed in the last session.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Affinito J (2002) Polymer film deposition by new vacuum process. Proc 45th Ann Tech Conf SVC, pp 425–439

    Google Scholar 

  • Affinito JD, Eufinger S, Gross ME, Graff GL, Martin PM (1997) PML/oxide/PML barrier layer performance differences arising from use of UV or electron beam polymerization of the PML layers. Thin Solid Films 308–309:19–25

    Article  Google Scholar 

  • Affinito JD, Graff GL, Shi K, Gross ME, Mousier PA, Hall MG (1999) A new hybrid deposition process, combining PML and PECVD, for high rate plasma polymerization of low vapor pressure and solid, monomer precursors. In: Proc 42nd Ann Tech Conf SVC, pp 102–107

    Google Scholar 

  • Akron Polymer Systems, Inc. 62 N. Summit St. Akron, OH 44308 USA

    Google Scholar 

  • Anders A (2006) Physics of arcing and implication to sputter deposition. Thin Solid Films 502:22–28

    Article  ADS  Google Scholar 

  • APTIV® Films. Victrex Technology Centre, Hillhouse International, Thornton Cleveleys, Lancashire FY5 4QD, UK

    Google Scholar 

  • Bryan L, Danforth BL, Dickey ER (2014) UV-curable top coat protection against mechanical abrasion for atomic layer deposition (ALD) thin film barrier coatings. Surf Coat Technol 241:142–147

    Article  Google Scholar 

  • Carcia PF, McLean RS, Reilly MH, Groner MD, George SM (2006) Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers. Appl Phys Lett 89:031915

    Article  ADS  Google Scholar 

  • Carcia PF, McLean RS, Groner MD, Dameron AA, George SM (2009) Al2O3 ALD and SiN PECVD films as gas diffusion ultra-barrier on polymer substrates. J Appl Phys 106:023533

    Article  ADS  Google Scholar 

  • Coclite AM, Ozaydin-Ince G, Palumbo F, Milella A, Gleason KK (2010) Single-chamber deposition of multilayer barriers by plasma enhanced and initiated chemical vapor deposition of Organosilicones. Plasma Processes Polym 7:561–570

    Article  Google Scholar 

  • CPI Printable Electronic Centre. NETPark, Thomas Wright way, Sedgefield, County Durham, TS21 3FG, UK

    Google Scholar 

  • Daalder JE (1976) Components of cathode erosion in vacuum arcs. J Phys D Appl Phys 9:2379

    Article  ADS  Google Scholar 

  • Dameron AA, Davidson SD, Burton BB, Carcia PF, McLean RS, George SM (2008) Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. J Phys Chem C 112:4573–4580

    Article  Google Scholar 

  • Dickey ER (2012) Advances in roll to roll atomic layer deposition. In: 55th annual technical conference of the Society of Vacuum Coaters, Santa Clara

    Google Scholar 

  • Dickey ER, Barrow WA (2009) High rate roll-to-roll deposition of ALD thin films on flexible substrates. In: 52nd annual technical conference of the Society of Vacuum Coaters, Santa Clara

    Google Scholar 

  • Dickey E, Barrow WA (2012) High rate roll to roll atomic layer deposition, and its application to moisture barriers on polymer films. J Vac Sci Technol A 30:021502

    Article  Google Scholar 

  • Dickey ER, Barrow WA (2013) Improved stability and moisture barrier performance of mixed oxide ALD films. In: 56th annual technical conference of the Society of Vacuum Coaters, Providence

    Google Scholar 

  • Erlat AG, Yan M, Duggal AR (2009) Engineered films for display technologies. In: Wong WS, Salleo A (eds) Flexible electronics. Springer, Boston, pp 413–449

    Chapter  Google Scholar 

  • Fitzpatrick PR, Gibbs ZM, George SM (2012) Evaluating operating conditions for continuous atmospheric atomic layer deposition using a multiple slit gas source head. J Vac Sci Technol A 30:01A136

    Article  Google Scholar 

  • Freire MT, Damant AP, Castle L, Reyes FGR (1999) Thermal stability of polyethylene terephthalate (PET): oligomer distribution and formation of volatiles. Packag Technol Sci 12(1):29–36

    Article  Google Scholar 

  • Frontier Industrial Technology Inc. (2015). http://www.frontierindustrial.com/page.asp?tid=79

  • Ghosh AP, Gerenser LJ, Jarman CM, Fornalik JE (2005) Thin-film encapsulation of organic light-emitting devices. Appl Phys Lett 86:223503

    Article  ADS  Google Scholar 

  • Graff GL, Burrows PE, Williford RE, Praino RF (2005) In: Crawford GP (ed) Barrier layer technology for flexible displays. Flexible Flat Panel Displays/Wiley, New York, pp 11–33

    Google Scholar 

  • Holland BJ, Hay JN (2002) Analysis of comonomer content and cyclic oligomers of poly (ethylene terephthalate). Polymer 43:1797–1804

    Article  Google Scholar 

  • Hong S, Jeon C, Song S, Kim J, Lee J, Kim D, Jeong S, Nam H, Lee J, Yang W, Park S, Tak Y, Ryu J, Kim C, Ahn B, Yeo S (2014) Development of commercial flexible AMOLEDs. Soc Inf Disp Dig 4501:334–337

    Article  Google Scholar 

  • International Standard ISO. 25178-604 Geometrical product specifications (GPS)-Surface texture: Areal. Part 604 Nominal characteristics of non-contact (coherence scanning interferometry) instruments

    Google Scholar 

  • Juettner B (1987) Characterization of the cathode spot. IEEE Trans Plasma Sci 15:474–480

    Article  ADS  Google Scholar 

  • Kapton®. DuPont High Performance Films, P.O. Box 89, Route 23 South; and DuPont, Road, Circleville, OH 43113 USA

    Google Scholar 

  • Kolon Industries. Daiichi Hibiya Bldg 9/F, 18-21, 1-Chome, Shinbashi, Minato-Ku, Tokyo, Japan

    Google Scholar 

  • Koski K, Holsa J, Juliet P (1999) Surface defects and arc generation in reactive magnetron sputtering of aluminum oxide thin films. Surf Coat Technol 115:163–171

    Article  Google Scholar 

  • Levy DH, Freeman D, Nelson SF, Cowdery-Corvan PJ, Stable ILM (2008) ZnO thin film transistors by fast open air atomic layer deposition. Appl Phys Lett 192101:92

    Google Scholar 

  • Levy DH, Nelson SF, Freeman D (2009) Oxide electronics by spatial atomic layer deposition. J Disp Technol 5:484–494

    Article  Google Scholar 

  • Lexan®. Sabic, One Plastics Avenue, Pittsfield, MA 01201

    Google Scholar 

  • MacDonald WA (2003) Polyester film. In: Encyclopedia polymer science & technology, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • MacDonald WA (2005) In: Crawford G (ed) Flexible flat panel displays. Wiley, Hoboken, and references contained therein

    Google Scholar 

  • MacDonald WA, Mackerron DH, Brooks DW (2002) Chapter. In: Brookes DW (ed) PET packaging technology. Sheffield Academic Press, Sheffield

    Google Scholar 

  • MacDonald WA, Looney MK, MacKerron D, Eveson R, Adam R, Hashimoto K, Rakos K (2007) Latest advances in substrates for flexible electronics. J SID 15(12):1075–1083

    Google Scholar 

  • Maixner RD (2002) Future trends in permeation measurement. In: Proceedings of Society of Vacuum Coaters, 45th annual technical conference, pp 461–464

    Google Scholar 

  • Maydannik PS, Kääriäinen TO, Cameron DC (2011a) An atomic layer deposition process for moving flexible substrates. Chem Eng J 171:345–349

    Article  Google Scholar 

  • Maydannik PS, Kääriäinen TO, Cameron DC (2011b) Continuous atomic layer deposition: explanation for anomalous growth rate effects. J Vac Sci Technol A 30:01A122

    Article  Google Scholar 

  • Maydannik PS, Kääriäinen TO, Lahtinen K, Cameron DC, Söderlund M, Soininen P, Johansson P, Kuusipalo J, Moro L, Zeng X (2014) Roll-to-roll atomic layer deposition process for flexible electronics encapsulation applications. J Vac Sci Technol A 32:051603

    Article  Google Scholar 

  • Maydannik PS, Plyushch A, Sillanpää M, Cameron DC (2015) Spatial atomic layer deposition: performance of low temperature H2O and O3 oxidant chemistry for flexible electronics encapsulation. J Vac Sci Technol A 33:031603

    Article  Google Scholar 

  • McDonald B, Rollins K, MacKerron RK, Eveson R, Hashimoto K, Rustin B (2005) In: Crawford GP (ed) Engineered films for display technologies. Flexible Flat Panel Displays/Wiley, New York, pp 11–33

    Google Scholar 

  • Mori T, Goto Y, Takemura C, Hirabayashi K (2014) Development of a barrier film for flexible OLED lighting. Konica Minolta Technol Rep 11:83–87

    Google Scholar 

  • Morrison NA, Stolley T, Hermanns U, Reus A, Deppisch T, Bolandi H, Melnik Y, Singh V, Griffith-Cruz J (2015) An overview of process & product requirements for next generation thin film electronics, advanced touch panel devices and ultra high barriers. Proc IEEE 103(4): 518–534

    Article  Google Scholar 

  • Muñoz-Rojas D, MacManus-Driscoll J (2014) Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics. Mater Horiz 1:314–320

    Article  Google Scholar 

  • Nisato G, Bouten PCP, Slikkerveer PJ, Bennett WD, Graff GL, Rutherford N, Wiese L (2001) Evaluating high performance diffusion barriers: the calcium test. In: Proceedings Asia display/IDW, pp 1435–1438

    Google Scholar 

  • Nisato G, Kuilder M, Bouten P, Moro L, Philips O, Rutherford N (2003) Thin film encapsulation for OLEDs: evaluation of multilayer barriers using the Ca test. In: SID symposium digest of technical papers, vol 34. Blackwell Publishing Ltd, pp 550–553

    Google Scholar 

  • Oerley H (2014) How metrology systems improve thin film coating quality with optical in-line process control. In: Proceedings 10th international conference of coatings on glass and plastics, pp 187–189

    Google Scholar 

  • Paetzold R, Winnacker A, Henseler D, Cesari V, Heuser K (2003) Permeation rate measurements by electrical analysis of calcium corrosion. Rev Sci Instrum 74:5147–5150

    Article  ADS  Google Scholar 

  • Park SHK, Oh J, Hwang CS, Lee JI, Yang YS, Chu HY (2005) Ultrathin film encapsulation of an OLED by ALD Electrochem. Solid State Lett 8:H21–H23

    Article  Google Scholar 

  • Perovic A (1985) Morphological instability of poly (ethylene terephthalate) cyclic oligomer crystals. J Mater Sci 20:1370–1374

    Article  ADS  MathSciNet  Google Scholar 

  • Pervovic A, Sundararajan PR (1982) Crystallization of cyclic oligomers in commercial poly (ethyleneterephathalate) films. Polym Bull 6:277–283

    Google Scholar 

  • Poodt P, Lankhorst A, Roozeboom F, Spee K, Maas D, Vermeer A (2010a) High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Adv Mater 22: 3564–3567

    Article  Google Scholar 

  • Poodt P, Lankhorst A, Roozeboom F, Tiba V, Spee K, Maas D, Vermeer A (2010b) 10th international conference on atomic layer deposition, Seoul

    Google Scholar 

  • Poodt P, Knaapen R, Illiberi A, Roozeboom F, van Asten A (2012a) Low temperature and roll-to-roll spatial atomic layer deposition for flexible electronics. J Vac Sci Technol A 30:01A142

    Article  Google Scholar 

  • Poodt P, Cameron DC, Dickey E, George SM, Kuznetsov V, Parsons GN, Roozeboom F, Sundaram G, Vermeer A (2012b) Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition. J Vac Sci Technol A 30:010802

    Article  Google Scholar 

  • Poodt P, Illiberi A, Roozeboom F (2013a) The kinetics of low-temperature spatial atomic layer deposition of aluminum oxide. Thin Solid Films 532:22–25

    Article  ADS  Google Scholar 

  • Poodt P, van Lieshout J, Illiberi A, Knaapen R, Roozeboom F, van Asten A (2013b) On the kinetics of spatial atomic layer deposition. J Vac Sci Technol A 31:01A108

    Article  Google Scholar 

  • PURE-ACE®. Teijin Chemicals Ltd, 1-2-2 Uchisaiwai-cho, Chiyoda-ku, Tokyo, Japan

    Google Scholar 

  • Ramadas S (2008) Nanoparticulate barrier films and gas permeation measurement techniques for thin film solar and display applications. In: Proc AIMCAL Ann Tech Conf

    Google Scholar 

  • Rooms H, Tripathi J, Coenen M, Groen P (2014) Clean4Yield, Enabling High Yield R2R Production of Printed Electronics. In: Proceedings 10th Int Conf Coatings on glass and plastics, pp 161–163

    Google Scholar 

  • Shi S, Wang D, Yang J, Zhou W, Li Y, Sun T, Nagayama K (2014) A 9.55-inch flexible top-emission AMOLED with a-IGZO TFTs. Soc Inf Disp Dig 4501:330–333

    Article  Google Scholar 

  • Shiono S (1979) Separation and identification of Poly(ethylene Terephthalate) Oligomers by Gel Permeation Chromatography. J Polym Sci Polym Chem Ed 17:4123–4127. Wiley

    Article  ADS  Google Scholar 

  • Spee DA (2013) Thin film organic/inorganic multilayer gas barriers by hot wire and initiated CVD. PhD Dissertation, Utrecht University, Utrecht

    Google Scholar 

  • Spee DA, Rath JK, Schropp REI (2015) Using hot wire and initiated chemical vapor deposition for gas barrier thin film encapsulation. Thin Solid Films 575:67–71

    Article  ADS  Google Scholar 

  • Sproul WE, Graham ME, Wong MS, Rudnik PJ (1997) Reactive dc magnetron sputtering of the oxides of Ti, Zr and Hf. Surf Coat Technol 89:10–15

    Article  Google Scholar 

  • Stevens M, Tuomela S, Mayer D (2005) Water vapor permeation testing of ultra-barriers: limitations of current methods and advancements resulting in increased sensitivity. In: Proceedings of Society of Vacuum Coaters, 48th annual technical conference, pp 189–191

    Google Scholar 

  • Suetomi E, Ozaki K, Fukazawa K (2005) Simulation of atmospheric pressure glow discharge in nitrogen. Konica Minolta Technol Rep 2:93–96

    Google Scholar 

  • Sumilite®. Sumitomo Bakelite Co. Ltd., Ten-Nouzu Parkside Bldg, 5-8,2-Chome, Higashi-Shinagawa, Shinagawa-Ku, Tokyo, 140-0002, Japan

    Google Scholar 

  • Suntola T, Antson J (1977) Method for producing compound thin films. US Patent 4,058,430 Filing date Nov 25, 1975; Pub date Nov 15, 1977

    Google Scholar 

  • Teknek Ltd. River Drive, Inchinnan Business Park, Renfrewshire, PA4 9RT, Scotland, UK

    Google Scholar 

  • Tsujimura T, Fukawa J, Endoh K, Suzuki Y, Hirabayashi K, Mori T (2014) Development of flexible organic light-emitting diode on barrier film and roll-to-roll manufacturing. J Soc Inf Disp 22:412–418

    Article  Google Scholar 

  • Wickersham CE, Poole JE, Fan JS, Zhu L (2001a) Video analysis of inclusion induced macroparticle emission from aluminum sputtering targets. J Vac Sci Technol A 19:2741–2750

    Article  ADS  Google Scholar 

  • Wickersham CE, Poole JE, Leybovich A, Zhu L (2001b) Measurements of the critical inclusion size for arcing & macroparticle ejection from aluminium sputtering targets. J Vac Sci Technol A 19:2767–2772

    Article  ADS  Google Scholar 

  • Wickersham CE, Poole JE, Fan JS (2002) Arc generation from sputtering plasma-dielectric inclusion interactions. J Vac Sci Technol A 20:833–838

    Article  ADS  Google Scholar 

  • Yaliziz A, Langlois MG (2004) UV versus electron beam radiation curing of vacuum deposited polymer leveling coatings for high barrier applications. In: Proc 47th Ann Tech Conf SVC, pp 600–605

    Google Scholar 

  • Yun SJ, Ko YW, Lim JW (2004) Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition. Appl Phys Lett 85:4896–4898

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Visser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Moro, L. et al. (2018). Barrier Film Development for Flexible OLED. In: Adachi, C., Hattori, R., Kaji, H., Tsujimura, T. (eds) Handbook of Organic Light-Emitting Diodes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55761-6_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55761-6_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55761-6

  • Online ISBN: 978-4-431-55761-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics