Skip to main content

Endogeneity in Spatial Models

  • Reference work entry
  • First Online:
Handbook of Regional Science

Abstract

The objective of this chapter is to provide an overview of estimation methods of spatial regression models including endogenous variables in addition to the spatial lag variable. We first provide evidence that spatial autocorrelation matters when dealing with endogenous variables. In particular, in terms of estimation, omitting a spatial lag and using spatially autocorrelated instruments induces bias in instrumental variables estimates. In terms of testing, wrongly omitted spatial autocorrelation under the form of a spatial lag or a spatial error significantly decreases the power of Hausman and Sargan tests, which are widely used in applied microeconometrics. We then describe instrumental variables, generalized method of moments and maximum likelihood procedures for cross-sectional and panel spatial models including endogenous variables, and suggest how standard diagnostics might be adapted given the presence of spatial error dependence. We finish by presenting other identification strategies, drawing from the impact evaluation econometrics literature, and discuss how they can be adapted in a spatial context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anselin L, Kelejian HH (1997) Testing for spatial error autocorrelation in the presence of endogenous regressors. Int Reg Sci Rev 20(1–2):153–182

    Article  Google Scholar 

  • Arellano M, Bond S (1991) Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev Econ Stud 58(5):277–297

    Article  Google Scholar 

  • Baltagi B (ed) (2013) Econometric analysis of panel data, 5th edn. Wiley, New York

    Google Scholar 

  • Baltagi B, Fingleton B, Pirotte A (2019) A time-space dynamic panel data model with spatial moving average errors. Reg Sci Urban Econ. 76:13–31. https://doi.org/10.1016/j.regsciurbeco.2018.04.013

  • Betz T, Cook SJ, Hollenbach FM (2019) Spatial interdependence and instrumental variable models. Polit Sci Res Methods. https://doi.org/10.1017/psrm.2018.61. (forthcoming)

  • Bond S (2002) Dynamic panel data models: a guide to micro data methods and practice. Port Econ J 1(2):141–162

    Article  Google Scholar 

  • Bowsher C (2002) On testing overidentifying restrictions in dynamic panel data models. Econ Lett 77(2):211–220

    Article  Google Scholar 

  • Cerulli G (2017) Identification and estimation of treatment effects in the presence of (correlated) neighborhood interactions: model and Stata implementation via ntreatreg. Stata J 17(4):803–833

    Google Scholar 

  • Delgado MS, Florax RJGM (2015) Difference- in-differences techniques for spatial data: local autocorrelation and spatial interaction. Econ Lett 137:123–126

    Article  Google Scholar 

  • Drukker DM, Egger P, Prucha IR (2013) On two-step estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors. Econ Rev 32(5–6):686–733

    Article  Google Scholar 

  • Fingleton B, Le Gallo J (2007) Finite sample properties of estimators of spatial models with autoregressive, or moving average, disturbances and system feedback. Ann Econ Stat (87/88):39–62

    Google Scholar 

  • Fingleton B, Le Gallo J (2008) Estimating spatial models with endogenous variables, a spatial lag and spatially dependent disturbances: finite sample properties. Pap Reg Sci 87(3):319–339

    Article  Google Scholar 

  • Keele L, Titiunik R (2018) Geographic natural experiments with interference: the effect of all-mail voting on turnout in Colorado. CESifo Econ Stud 64(2):127–149

    Article  Google Scholar 

  • Kelejian HH, Prucha IR (2004) Estimation of simultaneous systems of spatially interrelated cross sectional equations. J Econ 118(1-2):27–50

    Article  Google Scholar 

  • Kelejian HH, Prucha IR (2007) HAC estimation in a spatial framework. J Econ 140(1):131–154

    Article  Google Scholar 

  • Lee L-f (2007) GMM and 2SLS estimation of mixed regressive, spatial autoregressive models. J Econ 137(2):489–514

    Article  Google Scholar 

  • Le Gallo J, Fingleton B (2012) Measurement errors in a spatial context. Reg Sci Urban Econ 42(1-2):114–125

    Article  Google Scholar 

  • Le Gallo J, Mutl J (2014) Autocorrélation spatiale des erreurs et erreurs de mesure: quelles interactions? Rég Dév 40-2014:37–52

    Google Scholar 

  • Liu X (2012) On the consistency of the LIML estimator of a spatial autoregressive model with many instruments. Econ Lett 116(3):472–475

    Article  Google Scholar 

  • Liu X, Saraiva P (2015) GMM estimation of SAR models with endogenous regressors. Reg Sci Urban Econ 55(5–6):68–79

    Article  Google Scholar 

  • Liu X, Saraiva P (2019) GMM estimation of spatial autoregressive models in a system of simultaneous equations with heteroskedasticity. Econ Rev 38(4):359–385

    Article  Google Scholar 

  • Pesaran MH (ed) (2015) Time series and panel data econometrics. Oxford University Press, Oxford

    Google Scholar 

  • Yang K, Lee L-f (2017) Identification and QML estimation of multivariate and simultaneous equations spatial autoregressive models. J Econ 196(1):196–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Fingleton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Le Gallo, J., Fingleton, B. (2021). Endogeneity in Spatial Models. In: Fischer, M.M., Nijkamp, P. (eds) Handbook of Regional Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60723-7_122

Download citation

Publish with us

Policies and ethics