Skip to main content

Spezielle labortechnische Reaktoren: 3D-gedruckte Reaktoren

  • 690 Accesses

Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Kaum eine Technologie hat sich innerhalb der letzten Jahre so öffentlichkeitswirksam verbreitet wie die additive Fertigung. 3D-Drucker sind mittlerweile sowohl im Heimbereich als auch in der industriellen Fertigung anzutreffen. Anhand von zahlreichen Beispielen wird die fortschreitende Entwicklung von 3D-Drucktechniken für chemische Laboratorien dargestellt. Ausgehend von grundlegender Methodenevaluation finden heutzutage komplexe und präparativ nutzbare 3D-gedruckte Reaktoren breite Anwendung sowohl in der Mikro- und Millifluidik als auch in Form kreativ genutzter Batchreaktoren.

Schlüsselwörter

  • 3D-Druck
  • Additive Fertigung
  • Mikrofluidik
  • Millifluidik
  • Maßgefertigte Reaktoren

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11

Literatur

  • Ameloot, R.: Digital fabrication in catalytic technology. In: Sels, B., Van de Voorde, M. (Hrsg.) Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection, S. 359–381. Wiley-VCH, Weinheim (2017)

    CrossRef  Google Scholar 

  • Avril, A., Hornung, C.H., Urban, A., Fraser, D., Horne, M., Veder, J.-P., Tsanaktsidis, J., Rodopoulos, T., Henry, C., Gunasegaram, D.R.: Continuous flow hydrogenations using novel catalytic static mixers inside a tubular reactor. React. Chem. Eng. 2, 180–188 (2017)

    CAS  CrossRef  Google Scholar 

  • Bertsch, A., Heimgartner, S., Cousseau, P., Renaud, P.: Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1, 56–60 (2001)

    Google Scholar 

  • Bettermann, S., Schroeter, B., Moritz, H.-U., Pauer, W., Fassbender, M., Luinstra, G.A.: Continuous emulsion copolymerization processes at mild conditions in a 3D-printed tubular bended reactor. Chem. Eng. J. 338, 311–322 (2018)

    CAS  CrossRef  Google Scholar 

  • Capel, A.J., Edmondson, S., Christie, S.D.R., Goodridge, R.D., Bibb, R.J., Thurstans, M.: Design and additive manufacture for flow chemistry. Lab Chip 13, 4583–4590 (2013)

    Google Scholar 

  • Capel, A.J., Wright, A., Harding, M.J., Weaver, G.W., Li, Y., Harris, R.A., Edmondson, S., Goodridge, R.D., Christie, S.D.R.: 3D printed fluidics with embedded analytic functionality for automated reaction optimisation. Beilstein J. Org. Chem. 13, 111–119 (2017)

    CAS  CrossRef  Google Scholar 

  • Díaz-Marta, A.S., Tubío, C.R., Carbajales, C., Fernández, C., Escalante, L., Sotelo, E., Guitián, F., Barrio, V.L., Gil, A., Coelho, A.: Three-dimensional printing in catalysis: Combining 3D heterogeneous copper and palladium catalysts for multicatalytic multicomponent reactions. ACS Catal. 8, 392–404 (2018)

    CrossRef  Google Scholar 

  • Dragone, V., Sans, V., Rosnes, M.H., Kitson, P.J., Cronin, L.: 3D-printed devices for continuous-flow organic chemistry. Beilstein J. Org. Chem. 9, 951–959 (2013)

    CAS  CrossRef  Google Scholar 

  • Elias, Y., von Rohr, P.R., Bonrath, W., Medlock, J., Buss, A.: A porous structured reactor for hydrogenation reactions. Chem. Eng. Process. Process Intensif. 95, 175–185 (2015)

    CAS  CrossRef  Google Scholar 

  • Erkal, J.L., Selimovic, A., Gross, B.C., Lockwood, S.Y., Walton, E.L., McNamara, S., Martin, R.S., Spence, D.M.: 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14, 2023–2032 (2014)

    Google Scholar 

  • Gelhausen, M.G., Lenz, D., Krull, F., Korkmaz, V., Agar, D.W.: 3D printing for chemical process laboratories II: Measuring liquid-solid mass transfer coefficients. Chem. Eng. Technol. 41, 798–805 (2018)

    CAS  CrossRef  Google Scholar 

  • Gordeev, E.G., Degtyareva, E.S., Ananikov, V.P.: Analysis of 3D printing possibilities for the development of practical applications in synthetic organic chemistry. Russ. Chem. Bull. Int. Ed. 65, 1637–1643 (2016)

    Google Scholar 

  • Gutmann, B., Köckinger, M., Glotz, G., Ciaglia, T., Slama, E., Zadravec, M., Pfanner, S., Maier, M.C., Gruber-Wölfler, H., Kappe, C.O.: Design and 3D printing of a stainless steel reactor for continuous difluoromethylations using fluoroform. React. Chem. Eng. 2, 919–927 (2017)

    CAS  CrossRef  Google Scholar 

  • Hornung, C.H., Nguyen, X., Carafa, A., Gardiner, J., Urban, A., Fraser, D., Horne, M.D., Gunasegaram, D.R., Tsanaktsidis, J.: Use of catalytic static mixers for continuous flow gas-liquid and transfer hydrogenations in organic synthesis. Org. Process. Res. Dev. 21, 1311–1319 (2017)

    CAS  CrossRef  Google Scholar 

  • Kanazawaka, S., Eto, K., Imagawa, W., Akamine, S., Ichiki, R.: 3D-printed atmospheric-pressure plasma reactors. Int. J. Plasma Environ. Sci. Technol. 9, 103–106 (2015)

    Google Scholar 

  • Kazenwadel, F., Biegert, E., Wohlgemuth, J., Wagner, H., Franzreb, M.: A 3D-printed modular reactor setup including temperature and pH control for the compartmentalized implementation of enzyme cascades. Eng. Life Sci. 16, 560–567 (2016)

    CrossRef  Google Scholar 

  • Kise, D.P., Reddish, M.J., Dyer, R.B.: Sandwich-format 3D printed microfluidic mixers: A flexible platform for multi-probe analysis. J. Micromech. Microeng. 25, 124002 (2015)

    CrossRef  Google Scholar 

  • Kitson, P.J., Rosnes, M.H., Sans, V., Dragone, V., Cronin, L.: Configurable 3D-printed millifluidic and microfluidic ‚lab on chip‘ reactionware devices. Lab Chip 12, 3267–3271 (2012)

    Google Scholar 

  • Kitson, P.J., Symes, M.D., Dragone, V., Cronin, L.: Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification. Chem. Sci. 4, 3099–3103 (2013)

    CAS  CrossRef  Google Scholar 

  • Kitson, P.J., Marshall, R.J., Long, D., Forgan, R.S., Cronin, L.: 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up. Angew. Chem. Int. Ed. 53, 12723–12728 (2014)

    CAS  CrossRef  Google Scholar 

  • Kitson, P.J., Glatzel, S., Cronin, L.: The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer based robot. Beilstein J. Org. Chem. 12, 2776–2783 (2016)

    CAS  CrossRef  Google Scholar 

  • Kitson, P.J., Marie, G., Francoia, J.-P., Zalesskiy, S.S., Sigerson, R.C., Mathieson, J.S., Cronin, L.: Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals. Science 359, 314–319 (2018)

    CAS  CrossRef  Google Scholar 

  • Knitter, R., Liauw, M.A.: Ceramic microreactors for heterogeneously catalysed gas-phase reactions. Lab Chip 4, 378–383 (2004)

    Google Scholar 

  • Konarova, M., Aslam, W., Ge, L., Ma, Q., Tang, F., Rudolph, V., Beltramini, J.N.: Enabling process intensification by 3D printing of catalytic structures. Chem. Cat. Chem. 9, 4132–4138 (2017)

    CAS  Google Scholar 

  • Lederle, F., Kaldun, C., Namyslo, J.C., Hübner, E.G.: 3D-printing inside the glovebox: A versatile tool for inert-gas chemistry combined with spectroscopy. Helv. Chim. Acta. 99, 255–266 (2016a)

    CAS  CrossRef  Google Scholar 

  • Lederle, F., Meyer, F., Brunotte, G.-P., Kaldun, C., Hübner, E.G.: Improved mechanical properties of 3D-printed parts by fused deposition modeling under the exclusion of oxygen. Prog. Addit. Manuf. 1, 3–7 (2016b)

    CrossRef  Google Scholar 

  • Lederle, F., Meyer, F., Kaldun, C., Namyslo, J.C., Hübner, E.G.: Sonogashira coupling in 3D-printed NMR cuvettes: Synthesis and properties of arylnaphthylalkynes. New J. Chem. 41, 1925–1932 (2017)

    CAS  CrossRef  Google Scholar 

  • Lücking, T.H., Sambale, F., Beutel, S., Scheper, T.: 3D-printed individual labware in biosciences by rapid prototyping: A proof of principle. Eng. Life Sci. 15, 51–56 (2015)

    CrossRef  Google Scholar 

  • Manzano, J.S., Weinstein, Z.B., Sadow, A.D., Slowing, I.I.: Direct 3D printing of catalytically active structures. ACS Catal. 7, 7567–7577 (2017)

    CAS  CrossRef  Google Scholar 

  • Marks, P.: 3D printing takes off with the world’s first printed plane. New Sci. 211, 17–18 (2011)

    CrossRef  Google Scholar 

  • Mathieson, J.S., Rosnes, M.H., Sans, V., Kitson, P.J., Cronin, L.: Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device. Beilstein J. Nanotechnol. 4, 285–291 (2013)

    CrossRef  Google Scholar 

  • McDonald, J.C., Chabinyc, M.L., Metallo, S.J., Anderson, J.R., Stroock, A.D., Whitesides, G.M.: Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. Anal. Chem. 74, 1537–1545 (2002)

    CAS  CrossRef  Google Scholar 

  • Michel, F.M., Rimstidt, J.D., Kletetschka, K.: 3D printed mixed flow reactor for geochemical rate measurements. Appl. Geochem. 89, 86–91 (2018)

    CAS  CrossRef  Google Scholar 

  • Mousset, E., Weiqi, V.H., Kai, B.F.Y., Koh, J.S., Tng, J.W., Wang, Z., Lefebvre, O.: A new 3D-printed photoelectrocatalytic reactor combining the benefits of a transparent electrode and the Fenton reaction for advanced wastewater treatment. J. Mater. Chem. A 5, 24951–24964 (2017)

    CAS  CrossRef  Google Scholar 

  • Okafor, O., Weilhard, A., Fernandes, J.A., Karjalainen, E., Goodridge, R., Sans, V.: Advanced reactor engineering with 3D printing for the continuous-flow synthesis of silver nanoparticles. React. Chem. Eng. 2, 129–136 (2017)

    CAS  CrossRef  Google Scholar 

  • Parra-Cabrera, C., Achille, C., Kuhn, S., Ameloot, R.: 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors. Chem. Soc. Rev. 47, 209–230 (2018)

    CAS  CrossRef  Google Scholar 

  • Peris, E., Okafor, O., Kulcinskaja, E., Goodridge, R., Luis, S.V., Garcia-Verdugo, E., O’Reilly, E., Sans, V.: Tuneable 3D printed bioreactos for transaminations under continuous-flow. Green Chem. 19, 5345–5349 (2017)

    CAS  CrossRef  Google Scholar 

  • Rao, Z.X., Patel, B., Monaco, A., Cao, Z.J., Barniol-Xicota, M., Pichon, E., Ladlow, M., Hilton, S.T.: 3D-printed polypropylene continuous-flow column reactors: Exploration of reactor utility in SNAr reactions and the synthesis of bicyclic and tetracyclic heterocycles. Eur. J. Org. Chem. 2017, 6499–6504 (2017)

    CAS  CrossRef  Google Scholar 

  • Rogers, C.I., Qaderi, K., Woolley, A.T., Nordin, G.P.: 3D printed microfluidic devices with integrated valves. Biomicrofluidics 9, 016501 (2015)

    CrossRef  Google Scholar 

  • Rossi, S., Porta, R., Brenna, D., Puglisi, A., Benaglia, M.: Stereoselective catalytic synthesis of active pharmaceutical ingredients in homemade 3D-printed mesoreactors. Angew. Chem. Int. Ed. 56, 4290–4294 (2017)

    CAS  CrossRef  Google Scholar 

  • Sandron, S., Heery, B., Gupta, V., Collins, D.A., Nesterenko, E.P., Nesterenko, P.N., Talebi, M., Beirne, S., Thompson, F., Wallace, G.G., Brabazon, D., Regan, F., Paull, B.: 3D printed metal columns for capillary liquid chromatography. Analyst 139, 6343–6347 (2014)

    CAS  CrossRef  Google Scholar 

  • Scotti, G., Nilsson, S.M.E., Haapala, M., Pöhö, P., Af Gennäs, G.B., Yli-Kauhaluoma, J., Kotiaho, T.: A miniaturised 3D printed polypropylene reactor for online reaction analysis by mass spectrometry. React. Chem. Eng. 2, 299–303 (2017)

    CAS  CrossRef  Google Scholar 

  • SpaceX (Space Exploration Technologies Corporation): SpaceX launches 3D-printed part to space, creates printed engine chamber. http://www.spacex.com/news/2014/07/31/spacex-launches-3d-printed-part-space-creates-printed-engine-chamber-crewed (2014). Zugegriffen am 07.02.2018

  • Stefanov, B.I., Lebrun, D., Mattsson, A., Granqvist, C.G., Österlund, L.: Demonstrating online monitoring of air pollutant photodegradation in a 3D printed gas-phase photocatalysis reactor. J. Chem. Educ. 92, 678–682 (2015)

    CAS  CrossRef  Google Scholar 

  • Symes, M.D., Kitson, P.J., Yan, J., Richmond, C.J., Cooper, G.J.T., Bowman, R.W., Vilbrandt, T., Cronin, L.: Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4, 349–354 (2012)

    CAS  CrossRef  Google Scholar 

  • Therriault, D., White, S.R., Lewis, J.A.: Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2, 265–271 (2003)

    CAS  CrossRef  Google Scholar 

  • Yuen, P.K.: Embedding objects during 3D printing to add new functionalities. Biomicrofluidics 10, 044104 (2016)

    CrossRef  Google Scholar 

Weiterführende Literatur

  • Amin, R., Knowlton, S., Hart, A., Yenilmez, B., Ghaderinezhad, F., Katebifar, S., Messina, M., Khademhosseini, A., Tasoglu, S.: 3D-printed microfluidic devices. Biofabrication 8, 022001 (2016)

    CrossRef  Google Scholar 

  • Au, A.K., Lee, W., Folch, A.: Mail-order microfluidics: Evaluation of stereolithography for the production of microfluidic devices. Lab Chip 14, 1294–1301 (2014)

    Google Scholar 

  • Au, A.K., Huynh, W., Horowitz, L.F., Folch, A.: 3D-printed microfluidics. Angew. Chem. Int. Ed. 55, 3862–3881 (2016)

    CAS  CrossRef  Google Scholar 

  • Bhattacharjee, N., Urrios, A., Kang, S., Folch, A.: The upcoming 3D-printing revolution in microfluidics. Lab Chip 16, 1720–1742 (2016)

    Google Scholar 

  • Dizon, J.R.C., Espara Jr., A.H., Chen, Q., Advincula, R.C.: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44–67 (2018)

    CAS  CrossRef  Google Scholar 

  • Fitzpatrick, D.E., Battilocchio, C., Ley, S.V.: Enabling technologies for the future of chemical synthesis. ACS Cent. Sci. 2, 131–138 (2016)

    CAS  CrossRef  Google Scholar 

  • Gelhausen, M.G., Feuerbach, T., Schubert, A., Agar, D.W.: 3D printing for chemical process laboratories I: Materials and connection principles. Chem. Eng. Technol. 41, 618–627 (2018)

    CAS  CrossRef  Google Scholar 

  • Gross, B.C., Erkal, J.L., Lockwood, S.Y., Chen, C., Spence, D.M.: Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86, 3240–3253 (2014)

    CAS  CrossRef  Google Scholar 

  • Gross, B., Lockwood, S.Y., Spence, D.M.: Recent advances in analytical chemistry by 3D printing. Anal. Chem. 89, 57–70 (2017)

    CAS  CrossRef  Google Scholar 

  • He, Y., Wu, Y., Fu, J.-Z., Gao, Q., Qiu, J.-J. Developments of 3D printing microfluidics and applications in chemistry and biology: A review. Electroanalysis 28, 1658–1678 (2016)

    Google Scholar 

  • Hurt, C., Brandt, M., Priya, S.S., Bhatelia, T., Patel, J., Selvakannan, P.R., Bhargava, S.: Combining additive manufacturing and catalysis: A review. Catal. Sci. Technol. 7, 3421–3439 (2017)

    CAS  CrossRef  Google Scholar 

  • Ligon, S.C., Liska, R., Stampfl, J., Gurr, M., Mülhaupt, R.: Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017)

    CAS  CrossRef  Google Scholar 

  • Macdonald, N.P., Cabot, J.M., Smejkal, P., Guijt, R.M., Paull, B., Breadmore, M.C.: Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal. Chem. 89, 3858–3866 (2017)

    CAS  CrossRef  Google Scholar 

  • Rossi, S., Puglisi, A., Benaglia, M.: Additive manufacturing technologies: 3D printing in organic synthesis. ChemCatChem 10, 1512–1525 (2018)

    Google Scholar 

  • Sochol, R.D., Sweet, E., Glick, C.C., Venkatesh, S., Avetisyan, A., Ekman, K.F., Raulinaitis, A., Tsai, A., Wienkers, A., Korner, K., Hanson, K., Long, A., Hightower, B.J., Slatton, G., Burnett, D.C., Massey, T.L., Iwai, K., Lee, L.P., Pister, K.S.J., Lin, L.: 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip 16, 668–678 (2016)

    Google Scholar 

  • Stark, A.K.: Manufactured chemistry: Rethinking unit operation design in the age of additive manufacturing. AIChE J. 64, 1162–1173 (2018)

    Google Scholar 

  • Waheed, S., Cabot, J.M., Macdonald, N.P., Lewis, T., Guijt, R.M., Paull, B., Breadmore, M.C.: 3D printed microfluidic devices: Enablers and barriers. Lab Chip 16, 1993–2013 (2016)

    Google Scholar 

  • Yazdi, A.A., Popma, A., Wong, W., Nguyen, T., Pan, Y., Xu, J.: 3D printing: An emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid. Nanofluid. 20, 50 (2016)

    CrossRef  Google Scholar 

  • Zhou, X., Liu, C.-J.: Three-dimensional printing for catalytic applications: Current status and perspectives. Adv. Funct. Mater. 27, 1701134 (2017)

    Google Scholar 

  • Zwicker, A.P., Bloom, J., Albertson, R., Gershman, S.: The suitability of 3D printed plastic parts for laboratory use. Am. J. Phys. 83, 281–285 (2014)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eike G. Hübner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Hübner, E.G., Lederle, F. (2018). Spezielle labortechnische Reaktoren: 3D-gedruckte Reaktoren. In: Reschetilowski, W. (eds) Handbuch Chemische Reaktoren. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56444-8_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56444-8_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56444-8

  • Online ISBN: 978-3-662-56444-8

  • eBook Packages: Springer Referenz Naturwissenschaften