Zusammenfassung
In diesem Kapitel des Handbuchs Chemischer Reaktoren werden Ansätze zur Parallelisierung von Reaktoren mit dem Ziel der Erhöhung der Effizienz der Testverfahren, Reduktion des zeitlichen und finanziellen Aufwandes für die Testung, die Erhöhung der Reproduzierbarkeit der Ergebnisse und Wissensgenerierung beschrieben. Wie jedes experimentelle Vorgehen bedarf auch die Hochdurchsatz-Experimentation einer sehr sorgfältigen Planung der Versuche im Sinne eines Design of Experiment (DoE). Im Hochdurchsatz-Workflow werden anschließend die Phasen Primär- und Sekundärscreening solange durchlaufen, bis ein entsprechendes Entwicklungsziel erreicht worden ist. Parallelisiert werden können praktisch alle konventionellen Reaktortypen. Oberster Grundsatz bei der Planung und Entwicklung von Multireaktorsystemen ist ein völlig gleichartiges Verhalten aller Reaktoren des Parallelsystems, damit eine Vergleichbarkeit der Ergebnisse gegeben ist. Im Stadium der Realisierung eines Parallelisierungskonzeptes muss daher das Reaktorsystem immer gegen konventionelle Anlagen validiert werden. Vorgestellt werden Beispiele für Parallelreaktorkonzepte aus den Bereichen der mikrostrukturierten Hochdurchsatzreaktoren, der parallelen Strömungsrohrreaktoren, der parallelen Satzreaktoren und der photochemischen Parallelreaktoren.
Similar content being viewed by others
Literatur
AMTECH: SPR-16. http://www.amtech-htt.de/de/products.spr16.html (2018a). Zugegriffen am 24.05.2018
AMTECH: SWITCH-16. http://www.amtech-htt.de/de/products.switch16.html (2018b). Zugegriffen am 22.05.2018
AMTECH: SPR 100/4. http://www.amtech-htt.de/de/products.spr100.html (2018c). Zugegriffen am 24.05.2018
Avantium: Flowrence. https://www.avantium.com/rct/ (2018a). Zugegriffen am 22.05.2018
Avantium: Publikationen. https://www.avantium.com/publications/ (2018b). Zugegriffen am 22.05.2018
Bassou, B., Guilhaume, N., Iojoiu, E.E., Farrusseng, D., Lombaert, K., Bianchi, D., Mirodatos, C.: High-throughput approach to the catalytic combustion of diesel soot II: Screening of oxide-based catalysts. Catal. Today. 159, 138–143 (2010)
Baumes, L.A., Serra, J.M., Serna, P., Corma, A.: Support vector machines for predictive modeling in heterogeneous catalysis: A comprehensive introduction and overfitting investigation based on two real applications. J. Comb. Chem. 8, 583–596 (2006)
Bellefon, C. de, Tanchoux, N., Caravieilhes, S., Grenoullet, P., Hessel, V.: Microreactors for dynamic, high-throughput screening of fluid/liquid molecular catalysis. Angew. Chem. Int. Ed. 39, 3442–3445 (2000)
Bergh, S., et al.: Combinatorial heterogeneous catalysis: Oxidative dehydrogenation of ethane to ethylene, selective oxidation of ethane to acetic acid, and selective ammoxidation of propane to acrylonitrile. Top. Catal. 23, 65–79 (2003a)
Bergh, S., et al.: Gas phase oxidation of ethane to acetic acid using high-throughput screening in a massively parallel microfluidic reactor system. Appl. Catal. A Gen. 254, 67–76 (2003b)
Breuer, C., Lucas, M., Schuetze, F.W., Claus, P.: Implementation of the multi-channel monolith reactor in an optimisation procedure for heterogeneous oxidation catalysts based on genetic algorithms. Comb. Chem. High Throughput Screen. 10, 59–70 (2007)
Cao, C., Palo, D.R., Tonkovich, A.L., Wang, Y.: Catalyst screening and kinetic studies using microchannel reactors. Catal. Today 125, 29–33 (2007)
Castillo, F.A., Sweeney, J., Margl, P., Zirk, W.: Split-plot experimental designs for combinatorial and high-throughput experimentation. QSAR Comb. Sci. 24, 38–44 (2005)
Cawse, J.N.: Experimental Design for High Throughput Materials Development. Wiley, Chichester (2003)
Cetoni: https://www.cetoni.de/produkte/led-array-celed-96/ (2018). Zugegriffen am 25.05.2018
Chan, E.M., Xu, C., Mao, A.W., Han, G., Owen, J.S., Cohen, B.E., Milliron, D.J.: Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. Nano Lett. 10, 1874–1885 (2010)
Chemspeed: Autoplant. https://www.chemspeed.com/multiplant-autoplant-flowchem/ (2018a) . Zugegriffen am 24.05.2018
Chemspeed: ISYNTH. https://www.chemsped.com/technologies/reactors-vessels-vials/ (2018b). Zugegriffen am 25.05.2018
Cline, E.D., Adamson, S.E., Bernhard, S.: Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. Inorg. Chem. 47, 10378–10388 (2008)
Curtin, P.N., Tinker, L.L., Burgess, C.M., Cline, E.D., Bernhard, S.: Structure-activity correlations among iridium(III) photosensitizers in a robust water-reducing system. Inorg. Chem. 48, 10498–10506 (2009)
Cygan, Z.T., Cabral, J.T., Beers, K.L., Amis, E.J.: Microfluidic platform for the generation of organic-phase microreactors. Langmuir. 21, 3629–3634 (2005)
Cypes, S., et al.: High throughput screening of low temperature CO oxidation catalysts using IR thermography. Comb. Chem. High Throughput Screen. 10, 25–35 (2007)
Dechema: http://dechema.de/dechema_media/Reaktionstechnik_Roadmap_2017_en.pdf (2017). Zugegriffen am 25.05.2018
Dellamorte, J.C., Vijay, R., Snively, C.M., Barteau, M.A., Lauterbach, J.: High-throughput reactor system with individual temperature control for the investigation of monolith catalysts. Rev. Sci. Instrum. 78, 072211/072211–072211/072217 (2007)
D’Netto, G.A., Pawlicki, P.C., Schmitz, R.A.: Thermographic studies of catalytic reactions. Proc. SPIE-Int. Soc. Opt. Eng. 520, 84–91 (1985)
Durand, J., et al.: Long-lived palladium catalysts for CO/vinyl arene polyketones synthesis: A solution to deactivation problems. Chem. Eur. J. 12, 7639–7651 (2006)
Farrusseng, D., Klanner, C., Baumes, L., Lengliz, M., Mirodatos, C., Schueth, F.: Design of discovery libraries for solids based on QSAR models. QSAR Comb. Sci. 24, 78–93 (2005)
Fuessl, S., Trapp, O.: Integration of on-column catalysis and EKC analysis: Investigation of enantioselective sulfoxidations. Electrophoresis. 33, 1060–1067 (2012)
Furka, A., Sebestyen, F., Asgedom, M., Dibo, G.: Cornucopia of peptides by synthesis, S. 47. Prague (1988)
Furka, A., Sebestyen, F., Asgedom, M., Dibo, G.: General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Protein Res. 37, 487–493 (1991)
Gaertner, A., Lenk, T., Kiemel, R., Casu, S., Breuer, C., Stoewe, K.: High-throughput screening approach to identify new catalysts for total oxidation of methane from gas fueled lean burn engines. Top. Catal. 59, 1071–1075 (2016)
Gaudillere, C., Vernoux, P., Mirodatos, C., Caboche, G., Farrusseng, D.: Screening of ceria-based catalysts for internal methane reforming in low temperature SOFC. Catal. Today 157, 263–269 (2010)
Georgiades, G., Self, V.A., Sermon, P.A.: IR-emission analysis of temperature profiles of Pt/SiO2 catalysts in exothermic reactions. Angew. Chem. 99, 1050–1052 (1987)
Geysen, H.M., Meloen, R.H., Barteling, S.J.: Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. U. S. A. 81, 3998–4002 (1984)
Gobolos, S., Hegedus, M., Borbath, I., Margitfalvi, J.L.: Hydrogenolysis of butyl acetate to butanol over naphtha reforming type catalysts in conventional and high throughput slurry phase reactors. Chem. Ind. (Boca Raton, FL, US). 104, 91–100 (2005)
Gobolos, S., Banka, Z., Toth, Z., Szammer, J., Margitfalvi, J.L.: Highly selective preparation of trans-4-aminocyclohexanecarboxylic acid from cis-isomer over Raney nickel catalyst. Chem. Ind. (Boca Raton, FL, US). 115, 45–53 (2007)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA (1989)
Goldsmith, J.I., Hudson, W.R., Lowry, M.S., Anderson, T.H., Bernhard, S.: Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J. Am. Chem. Soc. 127, 7502–7510 (2005)
Grasser, J.A., Muggli, D.S.: A high-throughput reaction system to measure the gas-phase photocatalytic oxidation activity of TiO2 nanotubes. Rev. Sci. Instrum. 80, 075106/075101–075106/075110 (2009)
Groen, J.C., Abello, S., Villaescusa, L.A., Perez-Ramirez, J.: Mesoporous beta zeolite obtained by desilication. Microporous Mesoporous Mater. 114, 93–102 (2008)
Guram, A., Hagemeyer, A., Lugmair, C.G., Turner, H.W., Volpe Jr., A.F., Weinberg, W.H., Yaccato, K.: Application of high throughput screening to heterogeneous liquid and gas phase oxidation catalysis. Adv. Synth. Catal. 346, 215–230 (2004)
Hahndorf, I., Buyevskaya, O., Langpape, M., Grubert, G., Kolf, S., Guillon, E., Baerns, M.: Experimental equipment for high-throughput synthesis and testing of catalytic materials. Chem. Eng. J. 89, 119–125 (2002). https://doi.org/10.1016/S1385-8947(02)00005-0
Hanak, J.J.: The „multiple-sample concept“ in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 5, 964–971 (1970)
Hanak, J.J.: Multiple-sample concept: The forerunner of combinatorial materials science. In: Xiang, X.-D., Takeuchi, I. (Hrsg.) Combinatorial Materials Science, S. 7–34. Marcel-Dekker Inc, New York (2003a)
Hanak, J.J.: A quantum leap in the development of new materials and devices. Appl. Surf. Sci. 223, 1–8 (2003b)
Harmon, L.: Experiment planning for combinatorial materials discovery. J. Mater. Sci. 38, 4479–4485 (2003)
Hatch, A.C., Fisher, J.S., Pentoney, S.L., Yang, D.L., Lee, A.P.: Tunable 3D droplet self-assembly for ultra-high-density digital micro-reactor arrays. Lab Chip. 11, 2509–2517 (2011)
Hendershot, R.J., Vijay, R., Feist, B.J., Snively, C.M., Lauterbach, J.: Multivariate and univariate analysis of infrared imaging data for high-throughput studies of NH3 decomposition and NOx storage and reduction catalysts. Meas. Sci. Technol. 16, 302–308 (2005)
Hepatochem: https://www.hepatochem.com/photochemistry/photochemistry-devices-original/ (2018). Zugeriffen am 25.05.2018
Herk, D. van, Castano, P., Makkee, M., Moulijn, J.A., Kreutzer, M.T.: Catalyst testing in a multiple-parallel, gas-liquid, powder-packed bed microreactor Appl. Catal. A 365,199–206 (2009)
Hessel, V., Kralisch, D., Kockmann, N.: Novel Process Windows: Innovative Gates to Intensified & Sustainable Chemical Processes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2015)
Hoffmann, C., Schmidt, H.W., Schuth, F.: A multipurpose parallelized 49-channel reactor for the screening of catalysts: Methane oxidation as the example reaction. J. Catal. 198, 348–354 (2001)
Holena, M., Baerns, M.: Artificial neural networks in catalyst development. In: Cawse, J.N. (Hrsg.) Experimental Design for Combinatorial and High-Throughput Materials Development, S. 163–202. Wiley, New York (2003)
Holzwarth, A., Schmidt, H.W., Maier, W.F.: Detection of catalytic activity in combinatorial libraries of heterogeneous catalysts by IR thermography. Angew. Chem. Int. Ed. 37, 2644–2647 (1998)
Hoogenboom, R., Meier, M.A.R., Schubert, U.S.: Combinatorial methods, automated synthesis and high-throughput screening in polymer research: Past and present. Macromol. Rapid Commun. 24, 15–32 (2003)
Houghten, R.A.: General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. U. S. A. 82, 5131–5135 (1985)
hte: https://www.hte-company.com/de/loesungen/technology-solutions-ts/hochdurchsatzsysteme.html (2018). Zugegriffen am 22.05.2018
Huybrechts, W., Mijoin, J., Jacobs, P.A., Martens, J.A.: Development of a fixed-bed continuous-flow high-throughput reactor for long-chain n-alkane hydroconversion. Appl. Catal. A Gen. 243, 1–13 (2003). https://doi.org/10.1016/S0926-860X(02)00536-7
ILS: Flussreaktoren. http://www.integratedlabsolutions.com/technology-solutions/high-throughput-units/systems/parallel-trickle-flow-reactors/ (2018a). Zugegriffen am 22.05.2018
ILS: Monolithtestung. http://www.integratedlabsolutions.com/technology-solutions/high-throughput-units/systems/denox-monolith-testing-1/ (2018b). Zugegriffen am 22.05.2018
ILS: Satzreaktoren. http://www.integratedlabsolutions.com/technology-solutions/high-throughput-units/systems/parallel-batch-reactors/ (2018c). Zugegriffen am 23.05.2018
Iojoiu, E.E., et al.: High-throughput approach to the catalytic combustion of diesel soot. Catal. Today 137, 103–109 (2008)
Jandeleit, B., Schaefer, D.J., Powers, T.S., Turner, H.W., Weinberg, W.H.: Combinatorial materials science and catalysis. Angew. Chem. Int. Ed. 38, 2494–2532 (1999)
Kashid, M.N., Renken, A., Kiwi-Minsker, L.: Influence of flow regime on mass transfer in different types of microchannels. Ind. Eng. Chem. Res. 50, 6906–6914 (2011)
Kellow, J., Wolf, E.E.: In-situ IR thermography studies of reaction dynamics during carbon monoxide oxidation on rhodium/silica catalysts. Catal. Today 9, 47–51 (1991)
Khnayzer, R.S., Martin, D.R., Codding, C.L., Castellano, F.N.: Parallelization of photocatalytic gas-producing reactions. Rev. Sci. Instrum. 86, 034101/034101–034101/034107 (2015)
Kim, T.N., Campbell, K., Groisman, A., Kleinfeld, D., Schaffer, C.B.: Femtosecond laser-drilled capillary integrated into a microfluidic device. Appl. Phys. Lett. 86, 201106/201101–201106/201103 (2005)
Klein, J. et al.: The first use of the split&pool: Principle for the synthesis of inorganic solids. Abstracts of Papers, 224th ACS National Meeting, Boston, MA, United States, August 18–22 (2002)
Klein, J., Zech, T., Newsam, J.M., Schunk, S.A.: Application of a novel Split&Pool-principle for the fully combinatorial synthesis of functional inorganic materials. Appl. Catal. A. 254, 121–131 (2003)
Kraemer, M., Duisberg, M., Stoewe, K., Maier, W.F.: Highly selective CO methanation catalysts for the purification of hydrogen-rich gas mixtures. J. Catal. 251, 410–422 (2007)
Kubanek, P., Busch, O., Thomson, S., Schmidt, H.W., Schueth, F.: Imaging reflection IR spectroscopy as a tool to achieve higher integration for high-throughput experimentation in catalysis research. J. Comb. Chem. 6, 420–425 (2004a)
Kubanek, P., Schmidt, H.W., Spliethoff, B., Schueth, F.: Parallel IR spectroscopic characterization of CO chemisorption on Pt loaded zeolites. Microporous Mesoporous Mater. 77, 89–96 (2004b)
Kusakabe, K., Tokunaga, K., Zhao, G., Sotowa, K.I., Morooka, S.: Fabrication of parallel microchannel reactors for use in catalyst testing. J. Chem. Eng. Jpn. 35, 914–917 (2002)
Lasko, S.S., Hendershot, R.J., Fu, Y., Fellmann, M.F., Oskarsdottir, G., Snively, C.M., Lauterbach, J.: Spectroscopic imaging in the mid-infrared applied to high-throughput studies of supported catalyst libraries. In: Potyrailo, R.A., Amis, E.J. (Hrsg.) High-Throughput Analysis, S. 77–91. Kluwer Academic/Plenum Publishers, New York, USA (2003)
Lin, R., Ma, X., Fielitz, T.R., Obare, S.O., Ofoli, R.Y.: Facile hydrogenation of carbon-carbon double bonds using catalytic noble nanoparticles immobilized in microfluidic reactors. Catal. Commun. 18, 168–175 (2012)
Loskyll, J., Stoewe, K., Maier, W.F.: Infrared thermography as a high-throughput tool in catalysis research. ACS Comb. Sci. 14, 295–303 (2012)
Loskyll, J., Stoewe, K., Maier, W.F.: Search for new catalysts for the oxidation of SO2. ACS Comb. Sci. 15, 464–474 (2013)
Lucas, M., Claus, P.: High throughput screening in monolith reactors for total oxidation reactions. Appl. Catal. A. 254, 35–43 (2003)
Maier, W.F., Stoewe, K., Sieg, S.: Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed. 46, 6016–6067, S6016/6011 (2007)
Maj, A.M., Heyte, S., Araque, M., Dumeignil, F., Paul, S., Suisse, I., Agbossou-Niedercorn, F.: First catalytic asymmetric hydrogenation of quinoxaline-2-carboxylates. Tetrahedron. 72, 1375–1380 (2016)
Marengo, S., Raimondini, G., Comotti, P.: Investigation on adsorption and acid-base properties of solid catalysts by infrared thermography. Stud. Surf. Sci. Catal. 75, 2573–2576 (1993)
McCormick, T.M., Han, Z., Weinberg, D.J., Brennessel, W.W., Holland, P.L., Eisenberg, R.: Impact of ligand exchange in hydrogen production from cobaloxime-containing photocatalytic systems. Inorg. Chem. 50, 10660–10666 (2011)
Mestl, G.: High throughput development of selective oxidation catalysts at sud-chemie. Comb. Chem. High Throughput Screen. 15, 114–122 (2012)
Mills, P.L., Nicole, J.F.: Multiple Automated Reactor Systems (MARS). 1. A novel reactor system for detailed testing of gas-phase heterogeneous oxidation catalysts. Ind. Eng. Chem. Res. 44, 6435–6452 (2005a)
Mills, P.L., Nicole, J.F.: Multiple Automated Reactor Systems (MARS). 2. Effect of microreactor configurations on homogeneous gas-phase and wall-catalyzed reactions for 1,3-butadiene oxidation. Ind. Eng. Chem. Res. 44, 6453–6465 (2005b)
Moonen, R., Alles, J., Ras, E., Harvey, C., Moulijn, J.A.: Performance testing of hydrodesulfurization catalysts using a single-pellet-string reactor. Paper presented at the Chemical Engineering & Technology, 07/10/2017 (2017)
Morra, G., et al.: High-throughput gas phase transient reactor for catalytic material characterization and kinetic studies. Chem. Eng. J. (Amsterdam, Neth). 138, 379–388 (2008)
Moulijn, J.A., Perez-Ramirez, J., Berger, R.J., Hamminga, G., Mul, G., Kapteijn, F.: High-throughput experimentation in catalyst testing and in kinetic studies for heterogeneous catalysis. Catal. Today 81, 457–471 (2003)
MT: https://www.mt.com/dam/mt_ext_files/Editorial/Simple/0/51724286a_mm_systembrochurea4web.pdf (2018). Zugegriffen am 23.05.2018
Mueller, C., Lopez, L.G., Kooijman, H., Spek, A.L., Vogt, D.: Chiral bidentate phosphabenzene-based ligands: Synthesis, coordination chemistry, and application in Rh-catalyzed asymmetric hydrogenations. Tetrahedron Lett. 47, 2017–2020 (2006)
Murakami, S., Ohtaki, K., Matsumoto, S., Inoue, T.: Parallelization of catalytic packed-bed microchannels with pressure-drop microstructures for gas-liquid multiphase reactions. Jpn. J. Appl. Phys. 51, 06FK11/01–06FK11/02 (2012)
Nagy, A.J.: Implementation of high throughput experimentation techniques for kinetic reaction testing. Comb. Chem. High Throughput Screen. 15, 189–198 (2012)
Nandi, S., Mukherjee, P., Tambe, S.S., Kumar, R., Kulkarni, B.D.: Reaction modelling and optimization using neural networks and genetic algorithms: Case study involving TS-1 Catalyzed Hydroxylation of benzene. Ind. Eng. Chem. Res. 41, 2159–2169 (2002)
Oh, K.S., Woo, S.I.: Chemiluminescence analyzer of NOx as a high-throughput screening tool in selective catalytic reduction of NO. Sci. Technol. Adv. Mater. 12, 054211/054211–054211/054217 (2011)
Oh, K.S., Park, Y.K., Woo, S.I.: Highly reliable 64-channel sequential and parallel tubular reactor system for high-throughput screening of heterogeneous catalysts. Rev. Sci. Instrum. 76, 062219/062211–062219/062217 (2005)
Olong, N.E., Stoewe, K., Maier, W.F.: A combinatorial approach for the discovery of low temperature soot oxidation catalysts. Appl. Catal. B. 74, 19–25 (2007)
Paul, J.S., Jacobs, P.A., Weiss, P.A., Maier, W.F.: Combinatorial discovery of new catalysts for the selective oxidation of isobutane. Appl. Catal. A. 265, 185–193 (2004)
Paul, J.S., Janssens, R., Denayer Joeri, F.M., Baron, G.V., Jacobs, P.A.: Optimization of MoVSb oxide catalyst for partial oxidation of isobutane by combinatorial approaches. J. Comb. Chem. 7, 407–413 (2005)
Pawlicki, P.C., Schmitz, R.A.: Spatial effects on supported catalysts. Chem. Eng. Prog. 83, 40–45 (1987)
Perez-Ramirez, J., Berger, R.J., Mul, G., Kapteijn, F., Moulijn, J.A.: The six-flow reactor technology A review on fast catalyst screening and kinetic studies. Catal. Today 60, 93–109 (2000)
Potyrailo, R., Rajan, K., Stoewe, K., Takeuchi, I., Chisholm, B., Lam, H.: Combinatorial and high-throughput screening of materials libraries: Review of state of the art. ACS Comb. Sci. 13, 579–633 (2011)
PREMEX: http://premex-solutions.ch/media/archive1/hochdruckautoklaven/hochdruckautoklaven_stahl/a-linie/A-Linie_avalon_d.pdf (2018). Zugegriffen am 23.05.2018
Ramnarayanan, R., et al.: Directed-sorting method for synthesis of bead-based combinatorial libraries of heterogeneous catalysts. J. Comb. Chem. 8, 199–212 (2006)
Reetz, M.T., Becker, M.H., Kuhling, K.M., Holzwarth, A.: Time-resolved IR-thermographic detection and screening of enantioselectivity in catalytic reactions. Angew. Chem. Int. Ed. 37, 2647–2650 (1998)
Reis, N.M., Li Puma, G.: A novel microfluidic approach for extremely fast and efficient photochemical transformations in fluoropolymer microcapillary films. Chem. Commun. (Cambridge, UK). 51, 8414–8417 (2015)
Rodemerck, U., Ignaszewski, P., Lucas, M., Claus, P.: Parallel synthesis and fast catalytic testing of catalyst libraries for oxidation reactions. Chem. Eng. Technol. 23, 413–416 (2000). https://doi.org/10.1002/(SICI)1521-4125(200005)23:5<413::AID-CEAT413>3.0.CO;2-K
Saalfrank, J.W., Maier, W.F.: Doping, selection and composition spreads, a combinatorial strategy for the discovery of new mixed oxide catalysts for low-temperature CO oxidation. C. R. Chim. 7, 483–494 (2004)
Salaheldin, A.M., et al.: Automated synthesis of quantum dot nanocrystals by hot injection: Mixing induced self-focusing. Chem. Eng. J. (Amsterdam, Neth). 320, 232–243 (2017)
Schunk, S.A., Kolb, P., Sundermann, A., Zech, T., Klein, J.: Expanding the scope of combinatorial synthesis of inorganic solids: Application of the Split & Pool principle for the screening of functional materials. Comb. High-Throughput Discovery Optim. Catal. Mater. 11, 17–45 (2007)
Senkan, S.M.: High-throughput screening of solid-state catalyst libraries. Nature (London) 394, 350–353 (1998)
Serra, J.M., Chica, A., Corma, A.: Development of a low temperature light paraffin isomerization catalysts with improved resistance to water and sulphur by combinatorial methods. Appl. Catal. A Gen. 239, 35–42 (2003)
Seyler, M., Stoewe, K., Maier, W.F.: New hydrogen-producing photocatalysts-A combinatorial search. Appl. Catal. B. 76, 146–157 (2007)
Siegle, A.F., Trapp, O.: Implementation of Hadamard encoding for rapid multisample analysis in liquid chromatography. J. Sep. Sci. 38, 3839–3844 (2015)
Stockinger, S., Troendlin, J., Rominger, F., Trapp, O.: On-column reaction set-up for high-throughput screenings and mechanistic investigations. Adv. Synth. Catal. 357, 3377 (2015)
Stoewe, K., Ausfelder, F.: A practical modular course of combinatorial and high-throughput methods for use in academic teaching laboratories. Chem. Ing. Tech. 85, 919–925 (2013)
Stoewe, K., Hammes, M., Valtchev, M., Roth, M.B., Maier, W.F.: Parallel fixed bed microreactors for high-throughput screening with special focus on high corrosion resistance and new deacon catalysts for chlorine production. In: Hagemeyer, A., Volpe, A.F. (Hrsg.) Modern Applications of High Throughput R&D in Heterogeneous Catalysis, S. 113–168. Bentham Science, Sharjah (2014)
Su, H., Yeung, E.S.: High-throughput screening of heterogeneous catalysts by laser-induced fluorescence imaging. J. Am. Chem. Soc. 122, 7422–7423 (2000)
Su, H., Yeung, E.S.: Combinatorial study of zeolites in catalyzing the acylation of benzene via laser-induced fluorescence imaging. Appl. Spectrosc. 56, 1044–1047 (2002)
Su, H., Hou, Y., Houk, R.S., Schrader, G.L., Yeung, E.S.: Combinatorial screening of heterogeneous catalysts in selective oxidation of naphthalene by laser-induced fluorescence imaging. Anal. Chem. 73, 4434–4440 (2001)
Sun, Y., Chan, B.C., Ramnarayanan, R., Leventry, W.M., Mallouk, T.E., Bare, S.R., Willis, R.R.: Split-pool method for synthesis of solid-state material combinatorial libraries. J. Comb. Chem. 4, 569–575 (2002)
Thinon, O., Diehl, F., Avenier, P., Schuurman, Y.: Screening of bifunctional water-gas shift catalysts. Catal. Today 137, 29–35 (2008)
Tibiletti, D., de Graaf, E.A.B., Teh, S.P., Rothenberg, G., Farrusseng, D., Mirodatos, C.: Selective CO oxidation in the presence of hydrogen: Fast parallel screening and mechanistic studies on ceria-based catalysts. J. Catal. 225, 489–497 (2004)
Trapp, O.: Boosting the throughput of separation techniques by „multiplexing“. Angew. Chem. Int. Ed. 46, 5609–5613 (2007)
Trapp, O.: High-throughput monitoring of interconverting stereoisomers and catalytic reactions. Chim. Oggi. 26, 26–28 (2008)
Trapp, O.: Investigation of modulation parameters in multiplexing gas chromatography. J. Chromatogr. A. 1217, 6640–6645 (2010)
Trapp, O., Weber, S.K., Bauch, S., Baecker, T., Hofstadt, W., Spliethoff, B.: High-throughput kinetic study of hydrogenation over palladium nanoparticles: Combination of reaction and analysis. Chem. Eur. J. 14, 4657–4666 (2008)
Urschey, J., Kuehnle, A., Maier, W.F.: Combinatorial and conventional development of novel dehydrogenation catalysts. Appl. Catal. A. 252, 91–106 (2003)
Weidenhof, B., et al.: High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts. J. Am. Chem. Soc. 131, 9207–9219 (2009)
Wiley: https://www.wiley.com/en-us/High+Throughput+Experimentation+and+Combinatorial+Approaches+in+Catalysis+and+Materials+Science-p-9783527340125 (2018). Zugegriffen am 25.05.2018
Wu, T., Hirata, K., Suzuki, H., Xiang, R., Tang, Z., Yomo, T.: Shrunk to femtolitre: Tuning high-throughput monodisperse water-in-oil droplet arrays for ultra-small micro-reactors. Appl. Phys. Lett. 101, 074108/074101–074108/074104 (2012)
Xu, B.B., Zhang, Y.L., Wei, S., Ding, H., Sun, H.B.: On-chip catalytic microreactors for modern catalysis research. ChemCatChem. 5, 2091–2099 (2013)
Yi, J.P., Fan, Z.G., Jiang, Z.W., Li, W.S., Zhou, X.P.: High-throughput parallel reactor system for propylene oxidation catalyst investigation. J. Comb. Chem. 9, 1053–1059 (2007)
Zech, T., Klein, J., Schunk, S.A., Johann, T., Schueth, F., Kleditzsch, S., Deutschmann, O.: Miniaturized reactor concepts and advanced analytics for primary screening in high-throughput experimentation. In: Potyrailo, R.A., Amis, E.J. (Hrsg.) High-Throughput Analysis, S. 491–523. Kluwer Academic/Plenum Publishers, New York, USA (2003)
Zech, T., Bohner, G., Klein, J.: High-throughput screening of supported catalysts in massively parallel single-bead microreactors: Workflow aspects related to reactor bonding and catalyst preparation. Catal. Today 110, 58–67 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature
About this entry
Cite this entry
Stöwe, K. (2018). Spezielle labortechnische Reaktoren: Hochdurchsatz-Reaktionstechnik. In: Reschetilowski, W. (eds) Handbuch Chemische Reaktoren. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56444-8_45-1
Download citation
DOI: https://doi.org/10.1007/978-3-662-56444-8_45-1
Received:
Accepted:
Published:
Publisher Name: Springer Spektrum, Berlin, Heidelberg
Print ISBN: 978-3-662-56444-8
Online ISBN: 978-3-662-56444-8
eBook Packages: Springer Referenz Naturwissenschaften