Skip to main content

Spezielle labortechnische Reaktoren: Hochdurchsatz-Reaktionstechnik

  • Living reference work entry
  • First Online:
Handbuch Chemische Reaktoren

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

  • 865 Accesses

Zusammenfassung

In diesem Kapitel des Handbuchs Chemischer Reaktoren werden Ansätze zur Parallelisierung von Reaktoren mit dem Ziel der Erhöhung der Effizienz der Testverfahren, Reduktion des zeitlichen und finanziellen Aufwandes für die Testung, die Erhöhung der Reproduzierbarkeit der Ergebnisse und Wissensgenerierung beschrieben. Wie jedes experimentelle Vorgehen bedarf auch die Hochdurchsatz-Experimentation einer sehr sorgfältigen Planung der Versuche im Sinne eines Design of Experiment (DoE). Im Hochdurchsatz-Workflow werden anschließend die Phasen Primär- und Sekundärscreening solange durchlaufen, bis ein entsprechendes Entwicklungsziel erreicht worden ist. Parallelisiert werden können praktisch alle konventionellen Reaktortypen. Oberster Grundsatz bei der Planung und Entwicklung von Multireaktorsystemen ist ein völlig gleichartiges Verhalten aller Reaktoren des Parallelsystems, damit eine Vergleichbarkeit der Ergebnisse gegeben ist. Im Stadium der Realisierung eines Parallelisierungskonzeptes muss daher das Reaktorsystem immer gegen konventionelle Anlagen validiert werden. Vorgestellt werden Beispiele für Parallelreaktorkonzepte aus den Bereichen der mikrostrukturierten Hochdurchsatzreaktoren, der parallelen Strömungsrohrreaktoren, der parallelen Satzreaktoren und der photochemischen Parallelreaktoren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  • AMTECH: SPR-16. http://www.amtech-htt.de/de/products.spr16.html (2018a). Zugegriffen am 24.05.2018

  • AMTECH: SWITCH-16. http://www.amtech-htt.de/de/products.switch16.html (2018b). Zugegriffen am 22.05.2018

  • AMTECH: SPR 100/4. http://www.amtech-htt.de/de/products.spr100.html (2018c). Zugegriffen am 24.05.2018

  • Avantium: Flowrence. https://www.avantium.com/rct/ (2018a). Zugegriffen am 22.05.2018

  • Avantium: Publikationen. https://www.avantium.com/publications/ (2018b). Zugegriffen am 22.05.2018

  • Bassou, B., Guilhaume, N., Iojoiu, E.E., Farrusseng, D., Lombaert, K., Bianchi, D., Mirodatos, C.: High-throughput approach to the catalytic combustion of diesel soot II: Screening of oxide-based catalysts. Catal. Today. 159, 138–143 (2010)

    Article  CAS  Google Scholar 

  • Baumes, L.A., Serra, J.M., Serna, P., Corma, A.: Support vector machines for predictive modeling in heterogeneous catalysis: A comprehensive introduction and overfitting investigation based on two real applications. J. Comb. Chem. 8, 583–596 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Bellefon, C. de, Tanchoux, N., Caravieilhes, S., Grenoullet, P., Hessel, V.: Microreactors for dynamic, high-throughput screening of fluid/liquid molecular catalysis. Angew. Chem. Int. Ed. 39, 3442–3445 (2000)

    Google Scholar 

  • Bergh, S., et al.: Combinatorial heterogeneous catalysis: Oxidative dehydrogenation of ethane to ethylene, selective oxidation of ethane to acetic acid, and selective ammoxidation of propane to acrylonitrile. Top. Catal. 23, 65–79 (2003a)

    Article  CAS  Google Scholar 

  • Bergh, S., et al.: Gas phase oxidation of ethane to acetic acid using high-throughput screening in a massively parallel microfluidic reactor system. Appl. Catal. A Gen. 254, 67–76 (2003b)

    Article  CAS  Google Scholar 

  • Breuer, C., Lucas, M., Schuetze, F.W., Claus, P.: Implementation of the multi-channel monolith reactor in an optimisation procedure for heterogeneous oxidation catalysts based on genetic algorithms. Comb. Chem. High Throughput Screen. 10, 59–70 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Cao, C., Palo, D.R., Tonkovich, A.L., Wang, Y.: Catalyst screening and kinetic studies using microchannel reactors. Catal. Today 125, 29–33 (2007)

    Article  CAS  Google Scholar 

  • Castillo, F.A., Sweeney, J., Margl, P., Zirk, W.: Split-plot experimental designs for combinatorial and high-throughput experimentation. QSAR Comb. Sci. 24, 38–44 (2005)

    Article  CAS  Google Scholar 

  • Cawse, J.N.: Experimental Design for High Throughput Materials Development. Wiley, Chichester (2003)

    Google Scholar 

  • Cetoni: https://www.cetoni.de/produkte/led-array-celed-96/ (2018). Zugegriffen am 25.05.2018

  • Chan, E.M., Xu, C., Mao, A.W., Han, G., Owen, J.S., Cohen, B.E., Milliron, D.J.: Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. Nano Lett. 10, 1874–1885 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Chemspeed: Autoplant. https://www.chemspeed.com/multiplant-autoplant-flowchem/ (2018a) . Zugegriffen am 24.05.2018

  • Chemspeed: ISYNTH. https://www.chemsped.com/technologies/reactors-vessels-vials/ (2018b). Zugegriffen am 25.05.2018

  • Cline, E.D., Adamson, S.E., Bernhard, S.: Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. Inorg. Chem. 47, 10378–10388 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Curtin, P.N., Tinker, L.L., Burgess, C.M., Cline, E.D., Bernhard, S.: Structure-activity correlations among iridium(III) photosensitizers in a robust water-reducing system. Inorg. Chem. 48, 10498–10506 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Cygan, Z.T., Cabral, J.T., Beers, K.L., Amis, E.J.: Microfluidic platform for the generation of organic-phase microreactors. Langmuir. 21, 3629–3634 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Cypes, S., et al.: High throughput screening of low temperature CO oxidation catalysts using IR thermography. Comb. Chem. High Throughput Screen. 10, 25–35 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Dechema: http://dechema.de/dechema_media/Reaktionstechnik_Roadmap_2017_en.pdf (2017). Zugegriffen am 25.05.2018

  • Dellamorte, J.C., Vijay, R., Snively, C.M., Barteau, M.A., Lauterbach, J.: High-throughput reactor system with individual temperature control for the investigation of monolith catalysts. Rev. Sci. Instrum. 78, 072211/072211–072211/072217 (2007)

    Article  CAS  PubMed  Google Scholar 

  • D’Netto, G.A., Pawlicki, P.C., Schmitz, R.A.: Thermographic studies of catalytic reactions. Proc. SPIE-Int. Soc. Opt. Eng. 520, 84–91 (1985)

    Google Scholar 

  • Durand, J., et al.: Long-lived palladium catalysts for CO/vinyl arene polyketones synthesis: A solution to deactivation problems. Chem. Eur. J. 12, 7639–7651 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Farrusseng, D., Klanner, C., Baumes, L., Lengliz, M., Mirodatos, C., Schueth, F.: Design of discovery libraries for solids based on QSAR models. QSAR Comb. Sci. 24, 78–93 (2005)

    Article  CAS  Google Scholar 

  • Fuessl, S., Trapp, O.: Integration of on-column catalysis and EKC analysis: Investigation of enantioselective sulfoxidations. Electrophoresis. 33, 1060–1067 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Furka, A., Sebestyen, F., Asgedom, M., Dibo, G.: Cornucopia of peptides by synthesis, S. 47. Prague (1988)

    Google Scholar 

  • Furka, A., Sebestyen, F., Asgedom, M., Dibo, G.: General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Protein Res. 37, 487–493 (1991)

    Article  CAS  PubMed  Google Scholar 

  • Gaertner, A., Lenk, T., Kiemel, R., Casu, S., Breuer, C., Stoewe, K.: High-throughput screening approach to identify new catalysts for total oxidation of methane from gas fueled lean burn engines. Top. Catal. 59, 1071–1075 (2016)

    Article  CAS  Google Scholar 

  • Gaudillere, C., Vernoux, P., Mirodatos, C., Caboche, G., Farrusseng, D.: Screening of ceria-based catalysts for internal methane reforming in low temperature SOFC. Catal. Today 157, 263–269 (2010)

    Google Scholar 

  • Georgiades, G., Self, V.A., Sermon, P.A.: IR-emission analysis of temperature profiles of Pt/SiO2 catalysts in exothermic reactions. Angew. Chem. 99, 1050–1052 (1987)

    Article  CAS  Google Scholar 

  • Geysen, H.M., Meloen, R.H., Barteling, S.J.: Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. U. S. A. 81, 3998–4002 (1984)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gobolos, S., Hegedus, M., Borbath, I., Margitfalvi, J.L.: Hydrogenolysis of butyl acetate to butanol over naphtha reforming type catalysts in conventional and high throughput slurry phase reactors. Chem. Ind. (Boca Raton, FL, US). 104, 91–100 (2005)

    CAS  Google Scholar 

  • Gobolos, S., Banka, Z., Toth, Z., Szammer, J., Margitfalvi, J.L.: Highly selective preparation of trans-4-aminocyclohexanecarboxylic acid from cis-isomer over Raney nickel catalyst. Chem. Ind. (Boca Raton, FL, US). 115, 45–53 (2007)

    CAS  Google Scholar 

  • Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA (1989)

    Google Scholar 

  • Goldsmith, J.I., Hudson, W.R., Lowry, M.S., Anderson, T.H., Bernhard, S.: Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J. Am. Chem. Soc. 127, 7502–7510 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Grasser, J.A., Muggli, D.S.: A high-throughput reaction system to measure the gas-phase photocatalytic oxidation activity of TiO2 nanotubes. Rev. Sci. Instrum. 80, 075106/075101–075106/075110 (2009)

    Article  CAS  Google Scholar 

  • Groen, J.C., Abello, S., Villaescusa, L.A., Perez-Ramirez, J.: Mesoporous beta zeolite obtained by desilication. Microporous Mesoporous Mater. 114, 93–102 (2008)

    Article  CAS  Google Scholar 

  • Guram, A., Hagemeyer, A., Lugmair, C.G., Turner, H.W., Volpe Jr., A.F., Weinberg, W.H., Yaccato, K.: Application of high throughput screening to heterogeneous liquid and gas phase oxidation catalysis. Adv. Synth. Catal. 346, 215–230 (2004)

    Article  CAS  Google Scholar 

  • Hahndorf, I., Buyevskaya, O., Langpape, M., Grubert, G., Kolf, S., Guillon, E., Baerns, M.: Experimental equipment for high-throughput synthesis and testing of catalytic materials. Chem. Eng. J. 89, 119–125 (2002). https://doi.org/10.1016/S1385-8947(02)00005-0

    Article  CAS  Google Scholar 

  • Hanak, J.J.: The „multiple-sample concept“ in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 5, 964–971 (1970)

    Article  CAS  Google Scholar 

  • Hanak, J.J.: Multiple-sample concept: The forerunner of combinatorial materials science. In: Xiang, X.-D., Takeuchi, I. (Hrsg.) Combinatorial Materials Science, S. 7–34. Marcel-Dekker Inc, New York (2003a)

    Google Scholar 

  • Hanak, J.J.: A quantum leap in the development of new materials and devices. Appl. Surf. Sci. 223, 1–8 (2003b)

    Article  CAS  Google Scholar 

  • Harmon, L.: Experiment planning for combinatorial materials discovery. J. Mater. Sci. 38, 4479–4485 (2003)

    Article  CAS  Google Scholar 

  • Hatch, A.C., Fisher, J.S., Pentoney, S.L., Yang, D.L., Lee, A.P.: Tunable 3D droplet self-assembly for ultra-high-density digital micro-reactor arrays. Lab Chip. 11, 2509–2517 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Hendershot, R.J., Vijay, R., Feist, B.J., Snively, C.M., Lauterbach, J.: Multivariate and univariate analysis of infrared imaging data for high-throughput studies of NH3 decomposition and NOx storage and reduction catalysts. Meas. Sci. Technol. 16, 302–308 (2005)

    Article  CAS  Google Scholar 

  • Hepatochem: https://www.hepatochem.com/photochemistry/photochemistry-devices-original/ (2018). Zugeriffen am 25.05.2018

  • Herk, D. van, Castano, P., Makkee, M., Moulijn, J.A., Kreutzer, M.T.: Catalyst testing in a multiple-parallel, gas-liquid, powder-packed bed microreactor Appl. Catal. A 365,199–206 (2009)

    Google Scholar 

  • Hessel, V., Kralisch, D., Kockmann, N.: Novel Process Windows: Innovative Gates to Intensified & Sustainable Chemical Processes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2015)

    Google Scholar 

  • Hoffmann, C., Schmidt, H.W., Schuth, F.: A multipurpose parallelized 49-channel reactor for the screening of catalysts: Methane oxidation as the example reaction. J. Catal. 198, 348–354 (2001)

    Article  CAS  Google Scholar 

  • Holena, M., Baerns, M.: Artificial neural networks in catalyst development. In: Cawse, J.N. (Hrsg.) Experimental Design for Combinatorial and High-Throughput Materials Development, S. 163–202. Wiley, New York (2003)

    Google Scholar 

  • Holzwarth, A., Schmidt, H.W., Maier, W.F.: Detection of catalytic activity in combinatorial libraries of heterogeneous catalysts by IR thermography. Angew. Chem. Int. Ed. 37, 2644–2647 (1998)

    Article  CAS  Google Scholar 

  • Hoogenboom, R., Meier, M.A.R., Schubert, U.S.: Combinatorial methods, automated synthesis and high-throughput screening in polymer research: Past and present. Macromol. Rapid Commun. 24, 15–32 (2003)

    Article  CAS  Google Scholar 

  • Houghten, R.A.: General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. U. S. A. 82, 5131–5135 (1985)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • hte: https://www.hte-company.com/de/loesungen/technology-solutions-ts/hochdurchsatzsysteme.html (2018). Zugegriffen am 22.05.2018

  • Huybrechts, W., Mijoin, J., Jacobs, P.A., Martens, J.A.: Development of a fixed-bed continuous-flow high-throughput reactor for long-chain n-alkane hydroconversion. Appl. Catal. A Gen. 243, 1–13 (2003). https://doi.org/10.1016/S0926-860X(02)00536-7

    Article  CAS  Google Scholar 

  • ILS: Flussreaktoren. http://www.integratedlabsolutions.com/technology-solutions/high-throughput-units/systems/parallel-trickle-flow-reactors/ (2018a). Zugegriffen am 22.05.2018

  • ILS: Monolithtestung. http://www.integratedlabsolutions.com/technology-solutions/high-throughput-units/systems/denox-monolith-testing-1/ (2018b). Zugegriffen am 22.05.2018

  • ILS: Satzreaktoren. http://www.integratedlabsolutions.com/technology-solutions/high-throughput-units/systems/parallel-batch-reactors/ (2018c). Zugegriffen am 23.05.2018

  • Iojoiu, E.E., et al.: High-throughput approach to the catalytic combustion of diesel soot. Catal. Today 137, 103–109 (2008)

    Article  CAS  Google Scholar 

  • Jandeleit, B., Schaefer, D.J., Powers, T.S., Turner, H.W., Weinberg, W.H.: Combinatorial materials science and catalysis. Angew. Chem. Int. Ed. 38, 2494–2532 (1999)

    Article  CAS  Google Scholar 

  • Kashid, M.N., Renken, A., Kiwi-Minsker, L.: Influence of flow regime on mass transfer in different types of microchannels. Ind. Eng. Chem. Res. 50, 6906–6914 (2011)

    Article  CAS  Google Scholar 

  • Kellow, J., Wolf, E.E.: In-situ IR thermography studies of reaction dynamics during carbon monoxide oxidation on rhodium/silica catalysts. Catal. Today 9, 47–51 (1991)

    Article  CAS  Google Scholar 

  • Khnayzer, R.S., Martin, D.R., Codding, C.L., Castellano, F.N.: Parallelization of photocatalytic gas-producing reactions. Rev. Sci. Instrum. 86, 034101/034101–034101/034107 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Kim, T.N., Campbell, K., Groisman, A., Kleinfeld, D., Schaffer, C.B.: Femtosecond laser-drilled capillary integrated into a microfluidic device. Appl. Phys. Lett. 86, 201106/201101–201106/201103 (2005)

    Google Scholar 

  • Klein, J. et al.: The first use of the split&pool: Principle for the synthesis of inorganic solids. Abstracts of Papers, 224th ACS National Meeting, Boston, MA, United States, August 18–22 (2002)

    Google Scholar 

  • Klein, J., Zech, T., Newsam, J.M., Schunk, S.A.: Application of a novel Split&Pool-principle for the fully combinatorial synthesis of functional inorganic materials. Appl. Catal. A. 254, 121–131 (2003)

    Article  CAS  Google Scholar 

  • Kraemer, M., Duisberg, M., Stoewe, K., Maier, W.F.: Highly selective CO methanation catalysts for the purification of hydrogen-rich gas mixtures. J. Catal. 251, 410–422 (2007)

    Article  CAS  Google Scholar 

  • Kubanek, P., Busch, O., Thomson, S., Schmidt, H.W., Schueth, F.: Imaging reflection IR spectroscopy as a tool to achieve higher integration for high-throughput experimentation in catalysis research. J. Comb. Chem. 6, 420–425 (2004a)

    Article  CAS  PubMed  Google Scholar 

  • Kubanek, P., Schmidt, H.W., Spliethoff, B., Schueth, F.: Parallel IR spectroscopic characterization of CO chemisorption on Pt loaded zeolites. Microporous Mesoporous Mater. 77, 89–96 (2004b)

    Article  CAS  Google Scholar 

  • Kusakabe, K., Tokunaga, K., Zhao, G., Sotowa, K.I., Morooka, S.: Fabrication of parallel microchannel reactors for use in catalyst testing. J. Chem. Eng. Jpn. 35, 914–917 (2002)

    Article  CAS  Google Scholar 

  • Lasko, S.S., Hendershot, R.J., Fu, Y., Fellmann, M.F., Oskarsdottir, G., Snively, C.M., Lauterbach, J.: Spectroscopic imaging in the mid-infrared applied to high-throughput studies of supported catalyst libraries. In: Potyrailo, R.A., Amis, E.J. (Hrsg.) High-Throughput Analysis, S. 77–91. Kluwer Academic/Plenum Publishers, New York, USA (2003)

    Google Scholar 

  • Lin, R., Ma, X., Fielitz, T.R., Obare, S.O., Ofoli, R.Y.: Facile hydrogenation of carbon-carbon double bonds using catalytic noble nanoparticles immobilized in microfluidic reactors. Catal. Commun. 18, 168–175 (2012)

    Article  CAS  Google Scholar 

  • Loskyll, J., Stoewe, K., Maier, W.F.: Infrared thermography as a high-throughput tool in catalysis research. ACS Comb. Sci. 14, 295–303 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Loskyll, J., Stoewe, K., Maier, W.F.: Search for new catalysts for the oxidation of SO2. ACS Comb. Sci. 15, 464–474 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Lucas, M., Claus, P.: High throughput screening in monolith reactors for total oxidation reactions. Appl. Catal. A. 254, 35–43 (2003)

    Article  CAS  Google Scholar 

  • Maier, W.F., Stoewe, K., Sieg, S.: Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed. 46, 6016–6067, S6016/6011 (2007)

    Google Scholar 

  • Maj, A.M., Heyte, S., Araque, M., Dumeignil, F., Paul, S., Suisse, I., Agbossou-Niedercorn, F.: First catalytic asymmetric hydrogenation of quinoxaline-2-carboxylates. Tetrahedron. 72, 1375–1380 (2016)

    Article  CAS  Google Scholar 

  • Marengo, S., Raimondini, G., Comotti, P.: Investigation on adsorption and acid-base properties of solid catalysts by infrared thermography. Stud. Surf. Sci. Catal. 75, 2573–2576 (1993)

    Article  CAS  Google Scholar 

  • McCormick, T.M., Han, Z., Weinberg, D.J., Brennessel, W.W., Holland, P.L., Eisenberg, R.: Impact of ligand exchange in hydrogen production from cobaloxime-containing photocatalytic systems. Inorg. Chem. 50, 10660–10666 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Mestl, G.: High throughput development of selective oxidation catalysts at sud-chemie. Comb. Chem. High Throughput Screen. 15, 114–122 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Mills, P.L., Nicole, J.F.: Multiple Automated Reactor Systems (MARS). 1. A novel reactor system for detailed testing of gas-phase heterogeneous oxidation catalysts. Ind. Eng. Chem. Res. 44, 6435–6452 (2005a)

    Article  CAS  Google Scholar 

  • Mills, P.L., Nicole, J.F.: Multiple Automated Reactor Systems (MARS). 2. Effect of microreactor configurations on homogeneous gas-phase and wall-catalyzed reactions for 1,3-butadiene oxidation. Ind. Eng. Chem. Res. 44, 6453–6465 (2005b)

    Article  CAS  Google Scholar 

  • Moonen, R., Alles, J., Ras, E., Harvey, C., Moulijn, J.A.: Performance testing of hydrodesulfurization catalysts using a single-pellet-string reactor. Paper presented at the Chemical Engineering & Technology, 07/10/2017 (2017)

    Google Scholar 

  • Morra, G., et al.: High-throughput gas phase transient reactor for catalytic material characterization and kinetic studies. Chem. Eng. J. (Amsterdam, Neth). 138, 379–388 (2008)

    CAS  Google Scholar 

  • Moulijn, J.A., Perez-Ramirez, J., Berger, R.J., Hamminga, G., Mul, G., Kapteijn, F.: High-throughput experimentation in catalyst testing and in kinetic studies for heterogeneous catalysis. Catal. Today 81, 457–471 (2003)

    Article  CAS  Google Scholar 

  • MT: https://www.mt.com/dam/mt_ext_files/Editorial/Simple/0/51724286a_mm_systembrochurea4web.pdf (2018). Zugegriffen am 23.05.2018

  • Mueller, C., Lopez, L.G., Kooijman, H., Spek, A.L., Vogt, D.: Chiral bidentate phosphabenzene-based ligands: Synthesis, coordination chemistry, and application in Rh-catalyzed asymmetric hydrogenations. Tetrahedron Lett. 47, 2017–2020 (2006)

    Article  CAS  Google Scholar 

  • Murakami, S., Ohtaki, K., Matsumoto, S., Inoue, T.: Parallelization of catalytic packed-bed microchannels with pressure-drop microstructures for gas-liquid multiphase reactions. Jpn. J. Appl. Phys. 51, 06FK11/01–06FK11/02 (2012)

    Article  CAS  Google Scholar 

  • Nagy, A.J.: Implementation of high throughput experimentation techniques for kinetic reaction testing. Comb. Chem. High Throughput Screen. 15, 189–198 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Nandi, S., Mukherjee, P., Tambe, S.S., Kumar, R., Kulkarni, B.D.: Reaction modelling and optimization using neural networks and genetic algorithms: Case study involving TS-1 Catalyzed Hydroxylation of benzene. Ind. Eng. Chem. Res. 41, 2159–2169 (2002)

    Article  CAS  Google Scholar 

  • Oh, K.S., Woo, S.I.: Chemiluminescence analyzer of NOx as a high-throughput screening tool in selective catalytic reduction of NO. Sci. Technol. Adv. Mater. 12, 054211/054211–054211/054217 (2011)

    PubMed  Google Scholar 

  • Oh, K.S., Park, Y.K., Woo, S.I.: Highly reliable 64-channel sequential and parallel tubular reactor system for high-throughput screening of heterogeneous catalysts. Rev. Sci. Instrum. 76, 062219/062211–062219/062217 (2005)

    Article  CAS  Google Scholar 

  • Olong, N.E., Stoewe, K., Maier, W.F.: A combinatorial approach for the discovery of low temperature soot oxidation catalysts. Appl. Catal. B. 74, 19–25 (2007)

    Article  CAS  Google Scholar 

  • Paul, J.S., Jacobs, P.A., Weiss, P.A., Maier, W.F.: Combinatorial discovery of new catalysts for the selective oxidation of isobutane. Appl. Catal. A. 265, 185–193 (2004)

    Article  CAS  Google Scholar 

  • Paul, J.S., Janssens, R., Denayer Joeri, F.M., Baron, G.V., Jacobs, P.A.: Optimization of MoVSb oxide catalyst for partial oxidation of isobutane by combinatorial approaches. J. Comb. Chem. 7, 407–413 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Pawlicki, P.C., Schmitz, R.A.: Spatial effects on supported catalysts. Chem. Eng. Prog. 83, 40–45 (1987)

    CAS  Google Scholar 

  • Perez-Ramirez, J., Berger, R.J., Mul, G., Kapteijn, F., Moulijn, J.A.: The six-flow reactor technology A review on fast catalyst screening and kinetic studies. Catal. Today 60, 93–109 (2000)

    Article  CAS  Google Scholar 

  • Potyrailo, R., Rajan, K., Stoewe, K., Takeuchi, I., Chisholm, B., Lam, H.: Combinatorial and high-throughput screening of materials libraries: Review of state of the art. ACS Comb. Sci. 13, 579–633 (2011)

    Article  CAS  PubMed  Google Scholar 

  • PREMEX: http://premex-solutions.ch/media/archive1/hochdruckautoklaven/hochdruckautoklaven_stahl/a-linie/A-Linie_avalon_d.pdf (2018). Zugegriffen am 23.05.2018

  • Ramnarayanan, R., et al.: Directed-sorting method for synthesis of bead-based combinatorial libraries of heterogeneous catalysts. J. Comb. Chem. 8, 199–212 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Reetz, M.T., Becker, M.H., Kuhling, K.M., Holzwarth, A.: Time-resolved IR-thermographic detection and screening of enantioselectivity in catalytic reactions. Angew. Chem. Int. Ed. 37, 2647–2650 (1998)

    Article  CAS  Google Scholar 

  • Reis, N.M., Li Puma, G.: A novel microfluidic approach for extremely fast and efficient photochemical transformations in fluoropolymer microcapillary films. Chem. Commun. (Cambridge, UK). 51, 8414–8417 (2015)

    Article  CAS  Google Scholar 

  • Rodemerck, U., Ignaszewski, P., Lucas, M., Claus, P.: Parallel synthesis and fast catalytic testing of catalyst libraries for oxidation reactions. Chem. Eng. Technol. 23, 413–416 (2000). https://doi.org/10.1002/(SICI)1521-4125(200005)23:5<413::AID-CEAT413>3.0.CO;2-K

    Article  CAS  Google Scholar 

  • Saalfrank, J.W., Maier, W.F.: Doping, selection and composition spreads, a combinatorial strategy for the discovery of new mixed oxide catalysts for low-temperature CO oxidation. C. R. Chim. 7, 483–494 (2004)

    Article  CAS  Google Scholar 

  • Salaheldin, A.M., et al.: Automated synthesis of quantum dot nanocrystals by hot injection: Mixing induced self-focusing. Chem. Eng. J. (Amsterdam, Neth). 320, 232–243 (2017)

    CAS  Google Scholar 

  • Schunk, S.A., Kolb, P., Sundermann, A., Zech, T., Klein, J.: Expanding the scope of combinatorial synthesis of inorganic solids: Application of the Split & Pool principle for the screening of functional materials. Comb. High-Throughput Discovery Optim. Catal. Mater. 11, 17–45 (2007)

    Google Scholar 

  • Senkan, S.M.: High-throughput screening of solid-state catalyst libraries. Nature (London) 394, 350–353 (1998)

    Article  CAS  Google Scholar 

  • Serra, J.M., Chica, A., Corma, A.: Development of a low temperature light paraffin isomerization catalysts with improved resistance to water and sulphur by combinatorial methods. Appl. Catal. A Gen. 239, 35–42 (2003)

    Article  CAS  Google Scholar 

  • Seyler, M., Stoewe, K., Maier, W.F.: New hydrogen-producing photocatalysts-A combinatorial search. Appl. Catal. B. 76, 146–157 (2007)

    Article  CAS  Google Scholar 

  • Siegle, A.F., Trapp, O.: Implementation of Hadamard encoding for rapid multisample analysis in liquid chromatography. J. Sep. Sci. 38, 3839–3844 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Stockinger, S., Troendlin, J., Rominger, F., Trapp, O.: On-column reaction set-up for high-throughput screenings and mechanistic investigations. Adv. Synth. Catal. 357, 3377 (2015)

    Article  CAS  Google Scholar 

  • Stoewe, K., Ausfelder, F.: A practical modular course of combinatorial and high-throughput methods for use in academic teaching laboratories. Chem. Ing. Tech. 85, 919–925 (2013)

    Article  CAS  Google Scholar 

  • Stoewe, K., Hammes, M., Valtchev, M., Roth, M.B., Maier, W.F.: Parallel fixed bed microreactors for high-throughput screening with special focus on high corrosion resistance and new deacon catalysts for chlorine production. In: Hagemeyer, A., Volpe, A.F. (Hrsg.) Modern Applications of High Throughput R&D in Heterogeneous Catalysis, S. 113–168. Bentham Science, Sharjah (2014)

    Google Scholar 

  • Su, H., Yeung, E.S.: High-throughput screening of heterogeneous catalysts by laser-induced fluorescence imaging. J. Am. Chem. Soc. 122, 7422–7423 (2000)

    Article  CAS  Google Scholar 

  • Su, H., Yeung, E.S.: Combinatorial study of zeolites in catalyzing the acylation of benzene via laser-induced fluorescence imaging. Appl. Spectrosc. 56, 1044–1047 (2002)

    Article  CAS  Google Scholar 

  • Su, H., Hou, Y., Houk, R.S., Schrader, G.L., Yeung, E.S.: Combinatorial screening of heterogeneous catalysts in selective oxidation of naphthalene by laser-induced fluorescence imaging. Anal. Chem. 73, 4434–4440 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Chan, B.C., Ramnarayanan, R., Leventry, W.M., Mallouk, T.E., Bare, S.R., Willis, R.R.: Split-pool method for synthesis of solid-state material combinatorial libraries. J. Comb. Chem. 4, 569–575 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Thinon, O., Diehl, F., Avenier, P., Schuurman, Y.: Screening of bifunctional water-gas shift catalysts. Catal. Today 137, 29–35 (2008)

    Article  CAS  Google Scholar 

  • Tibiletti, D., de Graaf, E.A.B., Teh, S.P., Rothenberg, G., Farrusseng, D., Mirodatos, C.: Selective CO oxidation in the presence of hydrogen: Fast parallel screening and mechanistic studies on ceria-based catalysts. J. Catal. 225, 489–497 (2004)

    Google Scholar 

  • Trapp, O.: Boosting the throughput of separation techniques by „multiplexing“. Angew. Chem. Int. Ed. 46, 5609–5613 (2007)

    Google Scholar 

  • Trapp, O.: High-throughput monitoring of interconverting stereoisomers and catalytic reactions. Chim. Oggi. 26, 26–28 (2008)

    CAS  Google Scholar 

  • Trapp, O.: Investigation of modulation parameters in multiplexing gas chromatography. J. Chromatogr. A. 1217, 6640–6645 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Trapp, O., Weber, S.K., Bauch, S., Baecker, T., Hofstadt, W., Spliethoff, B.: High-throughput kinetic study of hydrogenation over palladium nanoparticles: Combination of reaction and analysis. Chem. Eur. J. 14, 4657–4666 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Urschey, J., Kuehnle, A., Maier, W.F.: Combinatorial and conventional development of novel dehydrogenation catalysts. Appl. Catal. A. 252, 91–106 (2003)

    Article  CAS  Google Scholar 

  • Weidenhof, B., et al.: High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts. J. Am. Chem. Soc. 131, 9207–9219 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Wiley: https://www.wiley.com/en-us/High+Throughput+Experimentation+and+Combinatorial+Approaches+in+Catalysis+and+Materials+Science-p-9783527340125 (2018). Zugegriffen am 25.05.2018

  • Wu, T., Hirata, K., Suzuki, H., Xiang, R., Tang, Z., Yomo, T.: Shrunk to femtolitre: Tuning high-throughput monodisperse water-in-oil droplet arrays for ultra-small micro-reactors. Appl. Phys. Lett. 101, 074108/074101–074108/074104 (2012)

    Google Scholar 

  • Xu, B.B., Zhang, Y.L., Wei, S., Ding, H., Sun, H.B.: On-chip catalytic microreactors for modern catalysis research. ChemCatChem. 5, 2091–2099 (2013)

    Article  CAS  Google Scholar 

  • Yi, J.P., Fan, Z.G., Jiang, Z.W., Li, W.S., Zhou, X.P.: High-throughput parallel reactor system for propylene oxidation catalyst investigation. J. Comb. Chem. 9, 1053–1059 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Zech, T., Klein, J., Schunk, S.A., Johann, T., Schueth, F., Kleditzsch, S., Deutschmann, O.: Miniaturized reactor concepts and advanced analytics for primary screening in high-throughput experimentation. In: Potyrailo, R.A., Amis, E.J. (Hrsg.) High-Throughput Analysis, S. 491–523. Kluwer Academic/Plenum Publishers, New York, USA (2003)

    Google Scholar 

  • Zech, T., Bohner, G., Klein, J.: High-throughput screening of supported catalysts in massively parallel single-bead microreactors: Workflow aspects related to reactor bonding and catalyst preparation. Catal. Today 110, 58–67 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Stöwe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stöwe, K. (2018). Spezielle labortechnische Reaktoren: Hochdurchsatz-Reaktionstechnik. In: Reschetilowski, W. (eds) Handbuch Chemische Reaktoren. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56444-8_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56444-8_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56444-8

  • Online ISBN: 978-3-662-56444-8

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics