Skip to main content

Physiologie der Befruchtung

  • 68 Accesses

Part of the book series: Springer Reference Medizin ((SRM))

Zusammenfassung

Die Befruchtung im engeren Sinne erfolgt durch Verschmelzung des Spermiums mit der Oozyte zur Zygote. Die nukleäre Maturation bezeichnet die Reifungsschritte der ersten und zweiten Meiose zur Reduktion des diploiden Chromosomensatzes, welche erst durch das Eindringen des Spermiums und die Ausschleusung des zweiten Polkörpers vollendet wird. Parallel dazu erfolgt die zytoplasmatische Reifung mit Größenzunahme der Eizelle sowie gesteigerten Transkriptions- und Translationsprozessen, welche wesentlich für die Entwicklungskompetenz der Eizelle und damit des entstehenden Embryos sind. Die Eizelle ist in einem engen Zeitfenster von ca. 12 Stunden nach der Ovulation im Eileiter befruchtungsfähig. Die Spermien erlangen erst im weiblichen Genitaltrakt durch Kapazitation die Kompetenz zur Fertilisierung einer Eizelle. Das Durchdringen des Kumuluskomplexes sowie die spezifische Bindung an die Zona pellucida und die Akrosomreaktion ermöglichen die Verschmelzung des Spermiums mit der Eizelle. Es folgt die Aktivierung der Oozyte mit Aufhebung des meiotischen Arrests, Dekondensation des Chromatins und Ausbildung eines weiblichen und männlichen Pronukleus.

This is a preview of subscription content, log in via an institution.

Literatur

  • Avenarius MR et al (2009) Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Genet 84(4):505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793:933–940

    Article  CAS  PubMed  Google Scholar 

  • Bleil JD, Wassarman PM (1980) Mammalian sperm-egg interaction: identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm. Cell 20(3):873–882

    Article  CAS  PubMed  Google Scholar 

  • Brunet S, Verlhac MH (2011) Positioning to get out of meiosis: the asymmetry of division. Hum Reprod Update 17(1):68–75

    Article  PubMed  Google Scholar 

  • Chang MC (1951) Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature (London) 168(4277):697–698

    Article  CAS  Google Scholar 

  • Coticchio G, Renzini MM et al (2017) Focused time-lapse analysis reveals novel aspects of human fertilization and suggests new parameters of embryo viability. Hum Reprod. https://doi.org/10.1093/humrep/dex344

  • De Jonge C (2005) Biological basis for human capacitation. Hum Reprod Update 11(3):205–214

    Article  PubMed  Google Scholar 

  • Dey SK (2010) How we are born. J Clin Invest 120(4):952–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichenlaub-Ritter U, Peschke M (2002) Expression in in-vivo and in-vitro growing and maturing oocytes: focus on regulation of expression at the translational level. Hum Reprod Update 8(1):21–41

    Article  CAS  PubMed  Google Scholar 

  • Fan HY et al (2009) MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 324(5929):938–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahlay G et al (2010) Gamete recognition in mice depends on the cleavage status of an egg's zona pellucida protein. Science 329(5988):216–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianaroli L et al (2010) Predicting aneuploidy in human oocytes: key factors which affect the meiotic process. Hum Reprod 25(9):2374–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrist RB, Lane M, Thompson JG (2008) Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update 14(2):159–177

    Article  CAS  PubMed  Google Scholar 

  • Gordo AC et al (2002) Intracellular calcium oscillations signal apoptosis rather than activation in in vitro aged mouse eggs. Biol Reprod 66(6):1828–1837

    Article  CAS  PubMed  Google Scholar 

  • Gosden R, Lee B (2010) Portrait of an oocyte: our obscure origin. J Clin Invest 120(4):973–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant VJ, Chamley LW (2010) Can mammalian mothers influence the sex of their offspring peri-conceptually? Reproduction 140(3):425–433

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Wells D (2010) The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod 16(10):715–725

    Article  CAS  PubMed  Google Scholar 

  • Ikawa M et al (2010) Fertilization: a sperm's journey to and interaction with the oocyte. J Clin Invest 120(4):984–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inge GB, Brinsden PR, Elder KT (2005) Oocyte number per live birth in IVF: were Steptoe and Edwards less wasteful? Hum Reprod 20(3):588–592

    Article  PubMed  Google Scholar 

  • Kashir J, Heindryckx B, Jones C et al (2010) Oocyte activation, phospholipase C zeta and human infertility. Hum Reprod Update 16(6):690–703

    Article  CAS  PubMed  Google Scholar 

  • Kimura M et al (2009) Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization. Biol Reprod 81(5):939–9347

    Article  CAS  PubMed  Google Scholar 

  • Litscher ES, Williams Z, Wassarman PM (2009) Zona pellucida glycoprotein ZP3 and fertilization in mammals. Mol Reprod Dev 76(10):933–941

    Article  CAS  PubMed  Google Scholar 

  • Market-Velker BA et al (2010) Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 19(1):36–51

    Article  CAS  PubMed  Google Scholar 

  • Murugesi S, Saso S et al (2017) Does the use of calcium ionophore during artificial oocyte activation demonstrate an effect on pregnancy rate? A meta-analysis. Fertil Steril 108:468–482

    Article  CAS  Google Scholar 

  • Oren-Benaroya R et al (2008) The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum Reprod 23(10):2339–2345

    Article  CAS  PubMed  Google Scholar 

  • Otsuka F, McTavish KJ, Shimasaki S (2011) Integral role of GDF-9 and BMP-15 in ovarian function. Mol Reprod Dev 78(1):9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao J, Feng HL (2011) Extra- and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update 17(1):17–33

    Article  PubMed  Google Scholar 

  • Richani D, Gilchrist RB (2017) The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update. https://doi.org/10.1093/humupd/dmx029

  • Richards JS, Pangas SA (2010) The ovary: basic biology and clinical implications. J Clin Invest 120(4):963–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders CM et al (2002) PLC zeta: a sperm-specific trigger of Ca (2+) oscillations in eggs and embryo development. Development 129(15):3533–3544

    PubMed  CAS  Google Scholar 

  • Sela-Abramovich S et al (2005) Mitogen-activated protein kinase mediates luteinizing hormone-induced breakdown of communication and oocyte maturation in rat ovarian follicles. Endocrinology 146(3):1236–1244

    Article  CAS  PubMed  Google Scholar 

  • Smitz JE, Thompson JG, Gilchrist RB (2011) The promise of in vitro maturation in assisted reproduction and fertility preservation. Semin Reprod Med 29(1):24–37

    Article  CAS  PubMed  Google Scholar 

  • Su YQ et al (2004) Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol 276(1):64–73

    Article  CAS  PubMed  Google Scholar 

  • Sun F et al (2005) Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum Reprod 20(3):761–767

    Article  CAS  PubMed  Google Scholar 

  • Sun QY, Miao YL, Schatten H (2009) Towards a new understanding on the regulation of mammalian oocyte meiosis resumption. Cell Cycle 8(17):2741–2747

    Article  CAS  PubMed  Google Scholar 

  • Sunkara SK et al (2011) Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod 26(7):1768–1774

    Article  PubMed  Google Scholar 

  • Swain JE, Pool TB (2008) ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update 14(5):431–446

    Article  PubMed  Google Scholar 

  • Tripathi A, Kumar KV, Chaube SK (2010) Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol 223(3):592–600

    PubMed  CAS  Google Scholar 

  • Visconti PE, Florman HM (2010) Mechanisms of sperm-egg interactions: between sugars and broken bonds. Sci Signal 3(142):pe35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson AJ (2007) Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. J Anim Sci 85(13 Suppl):E1–E3

    Article  CAS  PubMed  Google Scholar 

  • Wilcox AJ, Weinberg CR, Baird DD (1995) Timing of sexual intercourse in relation to ovulation. Effects on the probability of conception, survival of the pregnancy, and sex of the baby. N Engl J Med 333(23):1517–1521

    Article  CAS  PubMed  Google Scholar 

  • Yanagimachi R (2011) Mammalian sperm acrosome reaction: where does it begin before fertilization? Biol Reprod 85(1):4–5. http://www.biolreprod.org/content/85/1/4.full.pdf+html

    Article  CAS  PubMed  Google Scholar 

  • Yeo CX et al (2008) Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Hum Reprod 23(1):67–73

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Sonntag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sonntag, B. (2018). Physiologie der Befruchtung. In: Diedrich, K., Ludwig, M., Griesinger, G. (eds) Reproduktionsmedizin. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55601-6_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55601-6_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55601-6

  • Online ISBN: 978-3-662-55601-6

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Physiologie der Befruchtung
    Published:
    26 July 2018

    DOI: https://doi.org/10.1007/978-3-662-55601-6_9-2

  2. Original

    Physiologie der Befruchtung
    Published:
    25 May 2018

    DOI: https://doi.org/10.1007/978-3-662-55601-6_9-1