Skip to main content

Morphing Structures, Applications of


Morphing Structures – load-bearing systems capable of changing shape across multiple operating conditions to improve performance or enable new functions to the vehicle or body to which it is attached or comprises.



Boundary layer ingestion


Defense Advanced Research Projects Agency


Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center)


Electro-active polymers


Morphing aircraft structures


Shape memory alloy


Unmanned aerial vehicle


A direct relationship exists between the function of a structure and its geometry. Intrinsically, as it is well known, the geometry of a structure determines its stiffness, strength, and stability, thereby playing a large role in the structure’s ability to bear loads. Beyond this, the overall geometric “form” of a structure enables other functions in many cases. For example, lift and drag characteristics of aerodynamic and hydrodynamic structures such as wings, fins, and...

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  • ACARE (European Commission) (2001) Flightpath 2050: Europe’s vision for aviation. Publications Office of the European Union, Luxembourg. Accessed 22 Feb 2016

  • Baier H (2013) High precision adaptive space structures. Adv Sci Technol 83:115–121

    CrossRef  Google Scholar 

  • Barbarino S, Bilgen O, Ajaj RM, Friswell MI, Inman DJ (2011) A review of morphing aircraft. J Intell Mater Syst Struct 22:823–877

    CrossRef  Google Scholar 

  • Barlas T, Madsen H (2015) Atmospheric full scale testing of a morphing trailing edge flap system for wind turbine blades. Int J Mech Aerosp Ind Mechatronic Manuf Eng 9(10):1743–1748

    Google Scholar 

  • Betterflow GmbH (2019) Rear-wing system, Online article, Accessed 28 June 2019

  • Burgess M (2016) There’s now a sofa you can control from your phone, Wired, Online article, Accessed 2 July 2019

  • Calkins FT, Mabe JH (2016) Flight test of a shape memory alloy actuated adaptive trailing edge flap. In: ASME 2016 conference on smart materials, adaptive structures and intelligent systems (SMASIS 2016), Stowe, September 28–30

    Google Scholar 

  • Chen F, Liu L, Lan X, Li Q, Leng J, Liu Y (2017) The study on the morphing composite propeller for marine vehicle. Part I: design and numerical analysis. Compos Struct 168:746–757

    CrossRef  Google Scholar 

  • CityTransformer Online Website, Accessed 28 June 2019

  • Collins S. (No Date Specified) DRS: the drag reduction system explained, Racecar Engineering, Online article, Accessed 28 June 2019

  • Cuéllar WHC (2015) BR3: a biologically inspired fish-like robot actuated by SMA-based artificial muscles, PhD thesis. Universidad Politecnica de Madrid, Spain

    Google Scholar 

  • DHaus Company Dynamic living – who we are. London. Accessed 8 Dec 2017

  • Daynes S, Weaver P (2012) A morphing trailing edge device for a wind turbine. J Intell Mater Syst Struct 23(6):691–700

    CrossRef  Google Scholar 

  • Daynes S, Weaver P (2013) Review of shape-morphing automobile structures: concepts and outlook. Proc Inst Mech Eng D J Automob Eng 227(11):1603–1622

    CrossRef  Google Scholar 

  • Drozdowski Z, Gupta S (2009) Adaptive fritting as case exploration for adaptivity in architecture. In: Proceedings of the 29th annual conference of the association for computer aided design in architecture (ACADIA), Fargo, ND, pp 105–109

    Google Scholar 

  • El Razaz Z (2010) Sustainable vision of kinetic architecture. J Build Apprais 5:341–356

    CrossRef  Google Scholar 

  • Fenci GE, Currie NGR (2017) Deployable structures classification: a review. Int J Space Struct 32(2):112–130

    CrossRef  Google Scholar 

  • Fiorito F, Sauchelli M, Arroyo D, Pesenti M, Imperadori M, Masera G, Ranzi G (2016) Shape morphing solar shadings: a review. Renew Sust Energ Rev 55:863–884

    CrossRef  Google Scholar 

  • Focus Online (2009) BMW Gina Light auf dem Laufsteg, Online article, Accessed 28 June 2019

  • Forschner A (2009) BMW Lovos design, Car Body Design, Online article, Accessed 28 June 2019

  • Garg N, Lyu Z, Dhert T, Martins J, Young YL (2015) High-fidelity hydrodynamic shape optimization of a 3-D morphing hydrofoil. In: 4th international symposium on marine propulsors SMP ‘15, Austin

    Google Scholar 

  • Garvey J (2010) FlexibleLove – the extraordinary expanding chair, New Atlas, Online article, Accessed 2 July 2019

  • Ge Q, Sakhaei A, Lee H, Dunn C, Fang N, Dunn M (2016) Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep 6:31110.

    CrossRef  Google Scholar 

  • Hill J, Wang KW, Fang H (2013) Advances of surface control methodologies for flexible space reflectors. J Spacecr Rocket 50(4):816–828

    CrossRef  Google Scholar 

  • Hübler M, Nissle S, Gurka M, Wassenaar J (2016) Active vortex generator deployed on demand by size independent actuation of shape memory alloy wires integrated in fiber reinforced polymers. In: Proceedings of SPIE 9801, industrial and commercial applications of smart structures technologies 2016, Las Vegas, Mar 20–24, paper 98010G

    Google Scholar 

  • Hueber F, Caponnetto G, Poloni C (2017) A passively morphing trailing edge concept for sailing hydrofoil, Preprints, 2017060080

    Google Scholar 

  • Huxdorf O, Riemenschneider J, Lorsch P, Radestock M (2017) Structural design and experimental investigations of a shape-adaptive slat for wind energy rotor blades. In: VIII ECCOMAS thematic conference on smart structures and materials SMART2017, 5–8 June 2017, Madrid

    Google Scholar 

  • Khoo CK (2013) Sensory morphing skins. In: 30th international conference on education and research in computer aided architectural design in Europe (eCAADe 2012), vol 2, pp 221–229

    Google Scholar 

  • Kintscher M, Wiedemann M, Monner HP, Heintze O, Kühn T (2011) Design of a smart leading edge device for low speed wind tunnel tests in the European project SADE. Int J Struct Integr 2:383–405

    CrossRef  Google Scholar 

  • Kintscher M, Geier S, Monner HP, Wiedemann M (2014) Investigation of multi-material laminates for smart droop nose devices. In: 29th congress of the international council of the aeronautical sciences, ICAS 2014, St. Petersburg, 7–12 Sept

    Google Scholar 

  • Kota S, Flick P, Collier FS (2016) Flight testing of FlexFloilTM adaptive compliant trailing edge. In: 54th AIAA aerospace sciences meeting (SciTech 2016), San Diego, 4–8 Jan, AIAA paper 2016–0036

    Google Scholar 

  • Krone JH, Huxdorf O, Riemenschneider J, Monner HP, Schur F, Friedrichs J, Wiedemann M (2017) Experimental investigation and design of a shape-variable compressor cascade. CEAS Aeronaut J 8:105–127

    CrossRef  Google Scholar 

  • Li Y (2016) Desig and deployment analysis of morphing ocean structure, PhD thesis. Florida Atlantic University, United States

    Google Scholar 

  • Li J, Wu J, Yan S (2013) Conceptual design of deployment structures of morphing nose cone. Adv Mech Eng, vol 2013, paper no. 590957

    CrossRef  Google Scholar 

  • Lienhard J, Schleicher S, Poppinga S, Masselter T, Milwich M, Speck T, Knippers J (2011) Flectofin: a hinge-less flapping mechanism inspired by nature. Bioinspir Biomim 6:045001

    CrossRef  Google Scholar 

  • Liu Z-Q, Qiu H, Li X, Yang S-L (2017) Review of large spacecraft deployable membrane antenna structures. Chin J Mech Eng 30:1447–1459

    CrossRef  Google Scholar 

  • Lu K-J, Kota S (2003) An effective method of synthesizing compliant adaptive structures using load path representation. J Intell Mater Syst Struct 16(5):307–317

    Google Scholar 

  • Mabe J, Calkins F, Butler G (2006) Boeing’s variable geometry chevron, morphing aerostructure for jet noise reduction. In: 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Newport, 1–4 May, AIAA paper 2006–2142

    Google Scholar 

  • Marchese AD, Onal CD, Rus D (2014) Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomeric actuators. Soft Rob 1(1):75–87

    CrossRef  Google Scholar 

  • MIT Self Assembly Lab (2018) Liquid printed pneumatics, Online article, Accessed 28 June 2019

  • Nagy Z, Svetozarevic B, Jayathissa P, Begle M, Hofer J, Lydon G, Willmann A, Schlueter A (2016) The adaptive solar façade: from concept to prototypes. Front Archit Res 5:143–156

    CrossRef  Google Scholar 

  • Opitz S, Kaufmann K, Gardner A (2014) An active back-flow flap for a helicopter rotor blade. Adv Aircr Spacecr Sci 1(1):69–91

    CrossRef  Google Scholar 

  • Quadrelli M, Boussalis D, Davis G, Kwok K, Pellegrino S (2009) Structural and control concepts for variable geometry planetary entry systems. In: 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, paper AIAA-2009–2100, Palm Springs

    Google Scholar 

  • Rediniotis OK, Wilson LN, Lagoudas DC, Khan MM (2002) Development of a shape-memory-alloy actuated biomimetic hydrofoil. J Intell Mater Syst Struct 13(1):35–48

    CrossRef  Google Scholar 

  • Riemenschneider J, Pohl M, Ungurán R, Petrović V, Kühn M, Haldar A, Madhusoodanan H, Jansen E, Rolfes R (2018) Smart trailing edges for wind turbines. In: ASME 2018 conference on smart materials, adaptive structures and intelligent systems SMASIS2018, 10–12 Sept 2018, San Antonio, pp V001T04A001

    Google Scholar 

  • Riva. (No Date) 88’ Florida – the exhilaration of a Coupé, the Freedom of an Open Cruiser, Online article,'-Florida. Accessed 20 June 2019

  • Rodgers S (2014) A parallel world – more than meets the eye: electrical vehicle transforms from city nipper to sports car in seconds, MBandF, online article, Accessed 28 June 2019

  • Rudenko A, Hannig A, Monner HP, Horst P (2017) Extremely deformable morphing leading edge: optimization, design and structural testing. J Intell Mater Syst Struct. (in press)

    Google Scholar 

  • Sacher M, Durand M, Berrini E, Hauville F, Duvigneau R, Le Maitre O, Astolfi J-A (2018) Flexible hydrofoil optimization for the 35th America’s cup with constrained EGO method. Ocean Eng 157:62–72

    CrossRef  Google Scholar 

  • Savov V (2016) BMW’s vision next 100 is the concept car of my childhood dreams, The Verge, Online article, Accessed 2 July 2019

  • Schenk M, Viquerat AD, Seffen KA, Guest SD (2014) Review of inflatable booms for deployable space structures: packing and rigidization. J Spacecr Rocket 51(3):762–778

    CrossRef  Google Scholar 

  • Souppouris A (2013) Morph: a bold seating concept for flexible air travel, The Verge, Online article, Accessed 2 July 2019

  • Straubel M (2012) Design and sizing method for deployable space antennas, PhD thesis. Otto-von-Guericke-Universität Magdeburg, Germany

    Google Scholar 

  • Sung D (2016) Smart geometries for smart materials: taming thermobimetals to behave. J Archit Educ 70(1):96–106

    CrossRef  Google Scholar 

  • Teßmer J, Icpinar C (2015) Smart blades – development and design of intelligent rotor blades, Online report, Accessed 12 May 2017

  • The Mill Facility (2019) The Blackbird, Online website, Accessed 28 June 2019

  • Vasista S, Tong L, Wong KC (2012) Realization of morphing wings: a multidisciplinary challenge. J Aircr 49:11–28

    CrossRef  Google Scholar 

  • Vasista S, Riemenschneider J, Mendrock T, Monner HP (2018) Pressure-driven morphing devices for 3D shape changes with multiple degrees-of-freedom. In: ASME 2018 conference on smart materials, adaptive structures and intelligent systems SMASIS2018, 10–12 Sept 2018, San Antonio, pp V001T04A010

    Google Scholar 

  • Vasista S., Riemenschneider J., and Monner H.P., ``Design and Testing of a Compliant Mechanism-Based Demonstrator for a Droop-Nose Morphing Device'', AIAA Science and Technology Forum and Exhibition (SciTech2015), Paper AIAA 2015-1049, 2019.

  • Wabco (2017) WABCO launches industry-leading aerodynamic solutions for trailers in North America; Showcases OptiFlow AutoTail and Tail at TMC annual meeting and transportation technology exhibition, Online article, Accessed 28 June 2019

  • Washington G (1996) Smart aperture antennas. Smart Mater Struct 5:801–805

    CrossRef  Google Scholar 

  • Weisshaar TA (2013) Morphing aircraft systems: historical perspectives and future challenges. J Aircr 50(2013):337–353

    CrossRef  Google Scholar 

  • White J (2016) Transformers are go: meet the yacht designed to morph as you sail, The Telegraph, 20 April 2016, Online article, Accessed 20 June 2019

  • Wolff T, Ernst B, Seume JR (2014) Aerodynamic behaviour of an airfoil with morphing trailing edge for wind turbine applications. J Phys Conf Ser, vol 524, Conference 1

    Google Scholar 

  • Zhao J, Yan S, Deng L, Huang H, Liu Y (2017) Design and analysis of biomimetic nose cone for morphing of aerospace vehicle. J Bionic Eng 14:317–326

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Srinivas Vasista .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Vasista, S., Mierheim, O., Kintscher, M. (2019). Morphing Structures, Applications of. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering