Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

Active Control of Vibration, Applications of

  • Stephan AlgermissenEmail author
  • Björn T. Kletz
  • Martin Pohl
Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_246-1

Synonyms

Abbreviations

AMP

Amplifier

ANC

Active noise control

ANVC

Active noise-vibration control

ASAC

Active structural acoustic control

AVC

Active vibration control

CFRP

Carbon fiber reinforced polymer

CROR

Counter-rotating open rotor

EF

Eigenfrequency

EMI

Electromagnetic interference

FIR

Finite impulse response filter

FRF

Frequency response function

IIR

Infinite impulse response filter

LSA

Loudspeaker array

PBC

Printed circuit board

PVDF

Polyvinylidene fluoride

RME

Radiation modal expansion

SHM

Structural health monitoring

SLDV

Scanner laser Doppler vibrometer

SPL

Sound pressure level

SPU

Signal processing unit

TBL

Turbulent boundary layer

TL

Transmission loss

Definitions

In this chapter, different methods to achieve a reduction of unwanted structural vibrations using augmented active components are discussed. The proper selection of a suitable method depends on the application goal, the excitation source and...

This is a preview of subscription content, log in to check access.

References

  1. Algermissen S, Rose M, Keimer R, Sinapius M (2009) Robust gain-scheduling for smart-structures in parallel robots. In: SPIE smart structures and materials & nondestructive evaluation and health monitoring, San Diego. http://elib.dlr.de/59744/ CrossRefGoogle Scholar
  2. Elliott S, Benassi L, Brennan M, Gardonio P, Huang X (2004) Mobility analysis of active isolation systems. J Sound Vib 271(1–2):297–321MathSciNetCrossRefGoogle Scholar
  3. Kletz BT (2017) Aktive Schwingungsberuhigung mit reflektierenden und isolierenden Verbindungselementen in mehrfach angeregten Strukturen. Shaker VerlagGoogle Scholar
  4. Kletz BT, Melcher J (2015) Dual feedback control for vibration isolation systems dealing with multiple excitations. In: ICSV22, Florence, pp 1–8Google Scholar
  5. Kletz BT, Melcher J, Sinapius M (2012) Active vibration isolation of rear-view mirrors based on piezoceramic ”double spiral” actuators. In: Proceedings of ISMA2012-USD2012, pp 305–320Google Scholar
  6. Moheimani SR (2003) A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers. IEEE Trans Control Syst Technol 11(4):482–494CrossRefGoogle Scholar
  7. Pohl M, Rose M (2016) Piezoelectric shunt damping of a circular saw blade with autonomous power supply for noise and vibration reduction. J Sound Vib 361: 20–31CrossRefGoogle Scholar
  8. Pohl M, Rose M, Breitbach E (2011) Lrm- und Schwingungsreduktion eines Kreissgeblattes mit flchigen Piezokeramiken und hybriden elektrischen Netzwerken. Shaker VerlagGoogle Scholar
  9. Preumont A, François A (2002) Force feedback versus acceleration feedback in active vibration isolation. J Sound Vib 257:605–613CrossRefGoogle Scholar
  10. Schlünz S (2005) Analyse von berufsbedingt anerkannten Lärmschwerhörigkeiten. PhD thesis, Thüringer Universitäts-und LandesbibliothekGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Stephan Algermissen
    • 1
    Email author
  • Björn T. Kletz
    • 1
  • Martin Pohl
    • 1
  1. 1.Institute of Composite Structures and Adaptive SystemsGerman Aerospace Center (DLR)BrunswickGermany

Section editors and affiliations

  • Hans Peter Monner
    • 1
  1. 1.Institut für Faserverbundleichtbau und Adaptronik, Abteilung AdaptronikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)BraunschweigGermany