Skip to main content

Anisotropy of Linear Creep

  • 98 Accesses


Anisotropic linear viscoelasticity; Generalized corresponding principle; Viscoelastic composite materials


In general, two types of thermodynamic processes in materials can be distinguished: reversible or irreversible. Process is reversible if the material after unloading returns to the initial state, whereas it is irreversible if it does not return to its initial state, but to a changed state, where strains, stresses, and material properties differ from the initial ones. During irreversible processes, also called dissipative processes, the material suffers from various dissipative phenomena, such as plasticity, creep, damage, phase transformation, etc. that all result, locally or globally, in the material microstructure change (plastic microslips, or nucleation and growth of voids, or other) due to the internal energy dissipation. Only in the case of purely reversible process, after unloading, the material microstructure remains totally unchanged, what occurs in...

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  • Aboudi J, Arnold S, Bednarcyk B (2013) Micromechanics of composite materials. Elsevier, Amsterdam

    Google Scholar 

  • Alfrey T (1944) Non-homogeneous stresses in viscoelastic media. Quart Appl Math 2:113

    MathSciNet  CrossRef  Google Scholar 

  • Alfrey T (1948) Mechanical behavior of high polymers. Interscience Publishers, New York

    Google Scholar 

  • Findley W, Lai J, Onaran K (1976) Creep and relaxation of nonlinear viscoplastic materials. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Gan H, Orozco C, Herkovich C (2000) A strain-compatible method for micromechanical analysis of multi-phase composites. Int J Solids Struct 37: 5097–5122

    CrossRef  Google Scholar 

  • Ganczarski A, Skrzypek J (2013) Mechanics of novel materials. Politechnika Krakowska, Kraków (in Polish)

    MATH  Google Scholar 

  • Haasemann G, Ulbricht V (2010) Numerical evaluation of the viscoelastic and viscoplastic behavior of composites. Technische Mechanik 30:122–135

    Google Scholar 

  • Hashin Z, Rosen B (1964) The elastic moduli of fiber-reinforced materials. J Appl Mech 31:223–232

    CrossRef  Google Scholar 

  • Hoff N (1954) Approximate analysis of structures in the presence of moderately large creep deformations. Quart Appl Math 12:49

    MathSciNet  CrossRef  Google Scholar 

  • Martin-Herrero J, Germain C (2007) Microstructure reconstruction of fibrous C/C composites from X-ray microtomography. Carbon 45:1242–1253

    CrossRef  Google Scholar 

  • Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574

    CrossRef  Google Scholar 

  • Paley M, Aboudi J (1992) Micromechanical analysis of composites by generalized method of cells. Mech Mater 14:127–139

    CrossRef  Google Scholar 

  • Prager W (1957) Total creep under varying loads. J Aero Sci 24:153–155

    Google Scholar 

  • Shu L, Onat E (1967) On anisotropic linear viscoelastic solids. In: Proceedings of fourth symposium on naval structural mechanics. Pergamon Press, London, p 203

    Google Scholar 

  • Skrzypek J (1993) Plasticity and creep, theory, examples, and problems. Begell House/CRC Press, Boca Raton

    MATH  Google Scholar 

  • Skrzypek J, Ganczarski A (2015) Mechanics of anisotropic materials. Springer, Berlin

    CrossRef  Google Scholar 

  • Sun C, Vaidya R (1996) Prediction of composite properties from a representative volume element. Compos Sci Technol 56:171–179

    CrossRef  Google Scholar 

  • Tjong S, Ma Z (2000) Microstructural and mechanical characteristics of in situ metal matrix composite. Mater Sci Eng 3:49–113

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Artur Ganczarski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Ganczarski, A., Skrzypek, J. (2019). Anisotropy of Linear Creep. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering