# Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

# Direct Derivation of Plate Theories

Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_131-1

## Definitions

A shell is a solid body with one dimension (the thickness) small in comparison with the others. The thickness of a shell is measured with respect to a reference surface. A plate is a particular case of shell with flat reference surface.

## Introduction

This article provides an overview of elementary plate models. It starts in section “Equilibrium of Plates” with the definition of the internal state of stress of plates and the derivation of the equilibrium equations governing the corresponding stress-resultants and stress-couples. These equilibrium equations must be complemented with constitutive relations; this is addressed within the framework of elasticity in sections “The Thick Plate Model” and “The Thin Plate Model.”

Throughout this article, the so-called direct approach is adopted (see Naghdi, 1973; Altenbach and Eremeyev, 2009; Altenbach et al, 2010, and references therein). In other words,...

This is a preview of subscription content, log in to check access.

## References

1. Altenbach H, Eremeyev V (2009) On the linear theory of micropolar plates. ZAMM – J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 89(4):242–256
2. Altenbach J, Altenbach H, Eremeyev VA (2010) On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch Appl Mech 80(1):73–92
3. Arnold DN, Falk RS (1996) Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model. SIAM J Math Anal 27(2):486–514
4. Dauge M, Gruais I, Rössle A (2000) The influence of lateral boundary conditions on the asymptotics in thin elastic plates. SIAM J Math Anal 31(2):305–345
5. Ericksen JL, Truesdell C (1957) Exact theory of stress and strain in rods and shells. Arch Ration Mech Anal 1(1):295–323
6. Hencky H (1947) Über die Berücksichtigung der Schubverzerrung in ebenen Platten. Ingenieur-Archiv 16(1):72–76
7. Kirchhoff G (1850) Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik (Crelles Journal) 1850(40):51–88
8. Love AEH (1888) The small free vibrations and deformation of a thin elastic shell. Philos Trans R Soc A Math Phys Eng Sci 179:491–546
9. Love AEH (1927) A treatise on the mathematical theory of elasticity, 4th edn. Cambridge University Press, Cambridge
10. Mindlin RD (1951) Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 18:31–38
11. Naghdi PM (1973) The theory of shells and plates. In: Truesdell C (ed) Linear theories of elasticity and thermoelasticity. Springer, Berlin/Heidelberg, pp 425–640
12. Poisson SD (1829) Mémoire sur l’équilibre et le mouvement des corps élastiques. Mémoires de l’Académie Royale des Sciences de l’Institut de France 8:357–570Google Scholar
13. Reissner E (1947) On bending of elastic plates. Q Appl Math 5(1):55–68
14. Reissner E (1985) Reflections on the theory of elastic plates. Appl Mech Rev 38(11):1453–1464
15. Stefanou I, Sulem J, Vardoulakis I (2008) Three-dimensional Cosserat homogenization of masonry structures: elasticity. Acta Geotech 3(1):71–83
16. Thomson W, Tait PG (1883) Treatise on natural philosophy, vol 1. Cambridge University Press, Cambridge
17. Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill classic textbook reissue series, 2nd edn. McGraw-Hill Publishing Company, New YorkGoogle Scholar
18. Todhunter I (1886) A history of the theory of elasticity and of the strength of materials, vol 1. Cambridge University Press, Cambridge