Skip to main content

Preparation of Drug Liposomes by EDTA Gradient Methods

  • Reference work entry
  • First Online:
Liposome-Based Drug Delivery Systems

Part of the book series: Biomaterial Engineering ((BIOENG))

Abstract

The applications of ethylene diamine tetraacetic acid (EDTA) have expanded from the treatment for heavy metal poisoning to chelation therapies for atherosclerosis, heart disease, and cancer. In recent years, EDTA has been employed as a drug delivery system, in which the EDTA gradient method was used to load weakly amphiphilic base drugs into liposomes. Because EDTA can form low-solubility compounds with weakly amphiphilic base drugs such as anthracyclines, the liposomal formulations prepared by the EDTA gradient method have high drug-loading efficiency, good long-term stability, and delayed drug release. Furthermore, because of the chelation of EDTA, it can also reduce drug-related toxicity and liposome-related immune organ damage. In this chapter, the weakly amphiphilic base drugs (doxorubicin, topotecan, epirubicin, and idarubicin) were used as model drugs to introduce the EDTA gradient drug-loading method. The method presented in this part may be helpful in obtaining reliable and reproducible liposomes and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Blumer W, Cranton E (1989) Ninety percent reduction in cancer mortality after chelation therapy with EDTA. J Adv Med 2:183–187

    Google Scholar 

  • Body JJ (1992) Bone metastases and tumor-induced hypercalcemia. Curr Opin Oncol 4(4):624–631

    Article  CAS  Google Scholar 

  • Buss JL, Torti FM, Torti SV (2003) The role of iron chelation in cancer therapy. Curr Med Chem 10(12):1021–1034

    Article  CAS  Google Scholar 

  • Clarke NE (1960) Atherosclerosis, occlusive vascular disease and EDTA. Am J Cardiol 6(2):233–236

    Article  Google Scholar 

  • Cranton EM, Frackelton JP (1998) Free oxygen radical pathology and EDTA chelation therapy: mechanisms of action. J Adv Med 11(4):277–310

    Google Scholar 

  • Dans AL, Tan FN, Villarruz-Sulit EC (2002) Chelation therapy for atherosclerotic cardiovascular disease. Cochrane Database Syst Rev 4(4):CD002785

    Google Scholar 

  • Domingo JL (1998) Developmental toxicity of metal chelating agents. Reprod Toxicol 12(5):499–510

    Article  CAS  Google Scholar 

  • Erdahl WL, Chapman CJ, Taylor RW, Pfeiffer DR (1994) Ca2+ transport properties of ionophores A23187, ionomycin, and 4-BrA23187 in a well defined model system. Biophy J 66(5):1678

    Article  CAS  Google Scholar 

  • Erdahl WL, Chapman CJ, Taylor RW, Pfeiffer DR (1995) Effects of pH conditions on Ca2+ transport catalyzed by ionophores A23187, 4-BrA23187, and ionomycin suggest problems with common applications of these compounds in biological systems. Biophy J 69(6):2350

    Article  CAS  Google Scholar 

  • Fenske DB, Wong KF, Maurer E, Maurer N, Leenhouts JM, Boman N, Amankwa L, Cullis PR (1998) Ionophore-mediated uptake of ciprofloxacin and vincristine into large unilamellar vesicles exhibiting transmembrane ion gradients. BBA-Biomembranes 1414(1):188–204

    Article  CAS  Google Scholar 

  • Flora SJ, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7(7):2745–2788

    Article  CAS  Google Scholar 

  • Fulgenzi A, De Giuseppe R, Bamonti F, Vietti D, Ferrero ME (2015) Efficacy of chelation therapy to remove aluminium intoxication. J Inorg Biochem 152:214–218

    Article  CAS  Google Scholar 

  • Gordon GF (2003) EDTA and chelation therapy: history and mechanisms of action. J Am Coll Cardiol 35:521

    Google Scholar 

  • Gubernator J, Chwastek G, KoryciÅ„ska M, Stasiuk M, Grynkiewicz G, Lewrick F, Süss R, Kozubek A (2010) The encapsulation of idarubicin within liposomes using the novel EDTA ion gradient method ensures improved drug retention in vitro and in vivo. J Control Release 146(1):68–75

    Article  CAS  Google Scholar 

  • Gubernator J, Lipka D, KoryciÅ„ska M, KempiÅ„ska K, Milczarek M, Wietrzyk J, Hrynyk R, Barnert S, Süss R, Kozubek A (2014) Efficient human breast cancer xenograft regression after a single treatment with a novel liposomal formulation of Epirubicin prepared using the EDTA ion gradient method. PLoS One 9(3):e91487

    Article  Google Scholar 

  • Kitchell JR, Palmon F, Aytan N, Meltzer LE (1963) The treatment of coronary artery disease with disodium EDTA: a reappraisal. Am J Cardiol 11(4):501–506

    Article  CAS  Google Scholar 

  • Mundy GR, Guise TA (1997) Hypercalcemia of malignancy. Am J Med 103(2):134–145

    Article  CAS  Google Scholar 

  • Ouyang P, Gottlieb SH, Culotta VL, Navas-Acien A (2015) EDTA chelation therapy to reduce cardiovascular events in persons with diabetes. Curr Cardiol Rep 17(11):1–9

    Article  Google Scholar 

  • Pressman BC (1976) Biological applications of ionophores. Annu Rev Biochem 45(1):501–530

    Article  CAS  Google Scholar 

  • Riordan HD, Cheraskin E, Dirks M (1990) Mineral excretion associated with EDTA chelation therapy. J Adv Med 3(2):111–123

    Google Scholar 

  • Seely DM, Wu P, Mills EJ (2005) EDTA chelation therapy for cardiovascular disease: a systematic review. BMC Cardiovasc Disord 5(1):32

    Article  Google Scholar 

  • Song Y, Huang Z, Song Y, Tian Q, Liu X, She Z, Jiao J, Lu E, Deng Y (2014) The application of EDTA in drug delivery systems: doxorubicin liposomes loaded via NH4EDTA gradient. Int J Nanomedicine 9:3611

    CAS  Google Scholar 

  • Stewart JCM (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104(1):10–14

    Article  CAS  Google Scholar 

  • Thompson KA, Goodale DB (2000) The recent development of propofol (DIPRIVAN®). Intens Care Med 26(3):S400–S404

    Article  Google Scholar 

  • Torchilin V, Weissig V (2003) Liposomes: a practical approach. Oxford University Press, New York, pp 170–171

    Google Scholar 

  • Waters RS, Bryden NA, Patterson KY, Veillon C, Anderson RA (2001) EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc. Biol Trace Elem Res 83(3):207–221

    Article  CAS  Google Scholar 

  • Yang Y, Ma Y, Wang SA (2012) Novel method to load topotecan into liposomes driven by a transmembrane NH 4 EDTA gradient. Eur J Pharm Biopharm 80(2):332–339

    Article  CAS  Google Scholar 

  • Yang Q, Ma Y, Zhao Y, She Z, Wang L, Li J, Wang C, Deng Y (2013) Accelerated drug release and clearance of PEGylated epirubicin liposomes following repeated injections: a new challenge for sequential low-dose chemotherapy. Int J Nanomedicine 8(1):1257

    Google Scholar 

  • Yang Q, Zhang T, Wang C, Jiao J, Li J, Deng Y (2014) Coencapsulation of epirubicin and metformin in PEGylated liposomes inhibits the recurrence of murine sarcoma S180 existing CD133+ cancer stem-like cells. Eur J Pharm Biopharm 88(3):737–745

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihui Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Song, Y., Deng, Y. (2021). Preparation of Drug Liposomes by EDTA Gradient Methods. In: Lu, WL., Qi, XR. (eds) Liposome-Based Drug Delivery Systems. Biomaterial Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49320-5_6

Download citation

Publish with us

Policies and ethics