Skip to main content

Coupling Methods of Antibodies and Ligands for Liposomes

  • Reference work entry
  • First Online:
Liposome-Based Drug Delivery Systems

Part of the book series: Biomaterial Engineering ((BIOENG))

Abstract

This chapter describes the preparations of coupling methods of antibodies and ligands for targeted drug conjugates and for targeted drug liposomes. To prepare antibody-mediated targeting drug (referring to as antibody-drug conjugate, ADC), or antibody-mediated targeting drug liposomes, there are many approaches of coupling methods. According to the types of coupling agents, the methods usually consist of homobifunctional and heterobifunctional cross-linking approaches. To prepare ligand-mediated targeting drug or ligand-mediated targeting drug liposomes, various chemical modification and synthesis method can be used, depending on the clinical treatment purposes and material structures. The following will describe the typical protocol examples for preparing the targeted drug conjugates and targeted drug liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Apelgren LD, Bailey DL (1993) Chemo immunoconjugate development for ovarian carcinoma therapy: preclinical studies with vinca alkaloid- monoclonal antibody constructs. Bioconjug Chem 4(2):121–126

    Article  CAS  Google Scholar 

  • Apelgren LD, Zimmerman DL (1990) Antitumor activity of the monoclonal antibody-vinca alkaloid immuno conjugate LY203725 (KS1/4-4-desacetylvinblastine-3-carboxhydrazide) in a nude mouse model of human ovarian cancer. Cancer Res 50(12):3540–3544

    CAS  Google Scholar 

  • Chabner A, Roberts TG (2005) Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 5(1):65–72

    Article  CAS  Google Scholar 

  • Chari RVJ (1998) Targeted delivery of chemotherapeutics: tumor activated prodrug therapy. Adv Drug Deliv Rev 31(1–2):89–104

    Article  CAS  Google Scholar 

  • Chari RV (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41(1):98–107

    Article  CAS  Google Scholar 

  • Chari RVJ, Jackel KA (1995) Enhancement of the selectivity and antitumor efficacy of a CC-1065 analog through immunoconjugate formation. Cancer Res 55(18):4079–4084

    CAS  Google Scholar 

  • Dubowchik GM, Walker MA (1999) Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharmacol Ther 83(2):67–123

    Article  CAS  Google Scholar 

  • Hamann PR, Hinman LM (2002a) An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia: choice of linker. Bioconjug Chem 13(1):40–46

    Article  CAS  Google Scholar 

  • Hamann PR, Hinman LM (2002b) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody- calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13(1):47–58

    Article  CAS  Google Scholar 

  • Hamblett KJ, Senter PD (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10(20):7063–7070

    Article  CAS  Google Scholar 

  • Hartley JA (2011) The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin Investig Drugs 20:733–744

    Article  CAS  Google Scholar 

  • Hinman LM, Hamann PR (1993) Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res 53(14):3336–3342

    CAS  Google Scholar 

  • Hughes B (2010) Antibody-drug conjugates for cancer: poised to deliver? Nat Rev Drug Discov 9(9):665–667

    Article  CAS  Google Scholar 

  • Jaracz S, Chen J (2005) Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 13(17):5043–5054

    Article  CAS  Google Scholar 

  • Laguzza BC, Nichols CL (1989) New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: design, preparation, and representative in vivo activity. J Med Chem 32(3):548–555

    Article  CAS  Google Scholar 

  • Lee CC, Gillies ER (2006) A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 coloncarcinomas. Proc Natl Acad Sci 103(45):16649–16654

    Article  CAS  Google Scholar 

  • Liu CN, Tadayoni BM (1996) Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc Natl Acad Sci U S A 93(16):8618–8623

    Article  CAS  Google Scholar 

  • Maruyama K, Takizawa T, Yuda T, Kennel SJ, Huang L, Iwatsuru M (1995) Target ability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies. Biochim Biophys Acta 1234(1):74

    Article  Google Scholar 

  • Monkovic I, Knipe JO (1991) New hydrazone derivatives of adriamycin and their immunoconjugates- a correlation between acid stability and cytotoxicity. Bioconjug Chem 2(3):133–141

    Article  Google Scholar 

  • Ojima I, Geng XD (2002) Tumor-specific noveltaxoid-monoclonal antibody conjugates. J Med Chem 45(2012):5620–5623

    Article  CAS  Google Scholar 

  • Parakh S, Parslow AC (2015) Antibody-mediated delivery of therapeutics for cancer therapy. Expert Opin Drug Deliv 13(3):401–419

    Article  Google Scholar 

  • Patel VF, Hardin JN (1995) Novel trityl linked drug immunoconjugates for cancer therapy. Bioorg Med Chem Lett 5(5):507–512

    Article  CAS  Google Scholar 

  • Peters C, Brown S (2015) Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep 35(4):e00225

    Article  Google Scholar 

  • Rameshwar P, Jose PA (2012) Cellular delivery of doxorubicin via pH-controlled hydrazone linkage using multifunctional nano ehicle based on poly(β-L-malic acid). Int J Mol Sci 13(2012):11681–11693

    Google Scholar 

  • Russell J, Sanderson MA (2004) In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immune conjugate. Clin Caner Res 11(2005):843–852

    Google Scholar 

  • Sanderson RJ, Hering MA (2005) In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res 11(2Pt1):843–852

    CAS  Google Scholar 

  • Scott AM, Wolchok JD (2012) Antibody therapy of cancer. Nat Rev Cancer 12(2012):278–287

    Article  CAS  Google Scholar 

  • Sergii K, Chloe M (2017) Development and evaluation of β-galactosidase-sensitive antibody-drug conjugates. Eur J Med Chem 142(2017):376–382

    Google Scholar 

  • Shefet-Carasso L, Benhar I (2015) Antibody-targeted drugs and drug resistance-challenges and solutions. Drug Resist Updat 18(2014):36–46

    Article  Google Scholar 

  • Shen WC, Ryser HJ (1981) Cis-aconityl spacer between daunomycin and macromolecular carriers: a model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochem Bioph Res Commun 102(3):1048–1054

    Article  CAS  Google Scholar 

  • Srinivasachar K, Neville DM (1989) New protein cross-linking reagents that are cleaved by mild acid. Biochemistry 28(6):2501–2509

    Article  CAS  Google Scholar 

  • Sutherland MSK, Walter RB (2013) SGN-CD33A: a novel CD33-targeting antibody–drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood 122:1455–1463

    Article  CAS  Google Scholar 

  • Szakacs G, Paterson JK (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234

    Article  CAS  Google Scholar 

  • Teicher BA, Chari RV (2011) Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res 17(20):6389–6397

    Article  CAS  Google Scholar 

  • Ulbrich K, Etrych T (2003) HPMA copolymers with pH-controlled release of doxorubicin: in vitro cytotoxicity and in vivo antitumor activity. J Control Release 87(1–3):33–47

    Article  CAS  Google Scholar 

  • Ulbrich K, Etrych T (2004) Antibody-targeted polymer-doxorubicinconjugates with pH-controlled activation. J Drug Target 12(8):477–489

    Article  CAS  Google Scholar 

  • Yu Y, Wang Z-H, Zhang L, Yao H-J, Zhang Y, Li R-J, Ju R-J, Wang X-X, Zhou J, Li N, Lu W-L (2012) Mitochondrial targeting topotecan-loaded liposomes for treating drug-resistant breast cancer and inhibiting invasive metastases of melanoma. Biomaterials 33(6):1808–1820

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Liang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, M., Ma, QR., Lu, WL. (2021). Coupling Methods of Antibodies and Ligands for Liposomes. In: Lu, WL., Qi, XR. (eds) Liposome-Based Drug Delivery Systems. Biomaterial Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49320-5_22

Download citation

Publish with us

Policies and ethics