Skip to main content

Preparation of Cell Penetrating Peptides-Mediated Targeting Drug Liposomes

  • Reference work entry
  • First Online:
Liposome-Based Drug Delivery Systems

Part of the book series: Biomaterial Engineering ((BIOENG))

  • 1006 Accesses

Abstract

Biological membrane is the inevitable barrier needed to cross when liposomes try delivering drugs into cells, tissues, and organs for their biological actions. One of the most promising methods to overcome this barrier is based on the use of cell penetrating peptides (CPPs). Development of CPPs mediated targeting drug liposomes has focused on creating approaches for delivering bioactive molecules, especially for proteins and gene drugs, to cells and for enhancing their stability in vitro and in vivo. The most common type of various CPPs is cationic CPPs, which are positively charged and can enter cells when added exogenously. Here, we describe a mature approach based on thin film hydration method for cationic CPPs modified targeting drug liposomes (drug/CPPs-Lip) preparation. The formation of drug/CPPs-Lip depends on a number of experimental variables. The grafting method and location as well as the modification density of CPPs on liposomes strongly affect the activity and transmembrane capability of CPPs-drug/Lip. In addition, the control of experimental parameters such as temperature, hydration time, and sonicating frequency influences the final characteristics of the CPPs-drug/Lip, such as size, surface zeta potential, drug encapsulation efficiency, drug loading amount, stability, and reproducibility. The method presented in this chapter could be helpful to prepare reliable and reproducible drug/CPPs-Lip and according experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F (2014) Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers therapeutic and diagnostic molecules. Peptides 57:78–94

    Article  CAS  Google Scholar 

  • Gullotti E, Yeo Y (2009) Extracellularly activated Nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 6(4):1041–1051

    Article  CAS  Google Scholar 

  • Gupta B, Levchenko TS, Torchilin VP (2004) Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57(4):637–651

    Article  Google Scholar 

  • Hallbrink M, Floren A, Elmquist A, Pooga M, Bartfai T, Langel U (2001) Cargo delivery kinetics of cell-penetrating peptides. Biochim Biophys Acta 1515(2):101–109

    Article  CAS  Google Scholar 

  • Huang Y, Jiang Y, Wang H, Wang J, Shin MC, Byun Y, He H, Liang Y, Yang VC (2013) Curb challenges of the “Trojan Horse” approach: smart strategies in achieving effective yet safe cell penetrating peptide-based drug delivery. Adv Drug Deliv Rev 65(10):1299–1315

    Article  CAS  Google Scholar 

  • Iwasa A, Akita H, Khalila I, Kogurea K, Futakic S, Harashimaa H (2006) Cellular uptake and subsequent intracellular trafficking of R8-liposomes introduced at low temperature. Biochim Biophys Acta Biomembr 1758(6):713–720

    Article  CAS  Google Scholar 

  • Kuai R, Yuan W, Qin Y, Chen H, Tang J, Yuan M, Zhang Z, He Q (2010) Efficient delivery of payload into tumor cells in a controlled manner by TAT and Thiolytic cleavable PEG co-modified liposomes. Mol Pharm 7(5):1816–1826

    Article  CAS  Google Scholar 

  • Liu Y, Ran R, Chen J, Kuang Q, Tang J, Mei L, Zhang Q, Gao H, Zhang Z, He Q (2014) Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials 35(17):4835–4847

    Article  CAS  Google Scholar 

  • Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17(15–16):850–860

    Article  CAS  Google Scholar 

  • Pappalardo J, Quattrocchi V, Langellotti C, Di Giacomo S, Gnazzo V, Olivera V, Calamante G, Zamorano P, Levchenko T, Torchilin VP (2009) Improved transfection of spleen-derived antigenpresenting cells in culture using TATp-liposomes. J Control Release 134(1):41–46

    Article  CAS  Google Scholar 

  • Patel LN, Zaro JL, Shen WC (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24(11):1977–1992

    Article  CAS  Google Scholar 

  • Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278(1):585–590

    Article  CAS  Google Scholar 

  • Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67(5):715–726

    Article  CAS  Google Scholar 

  • Torchilin VP (2008) Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Pept Sci 90(5):604–610

    Article  CAS  Google Scholar 

  • Vives E (2005) Present and future of cell-penetrating peptide mediated delivery systems: “is the Trojan horse too wild to go only to Troy?”. J Control Release 109(1–3):77–85

    Article  CAS  Google Scholar 

  • Zhang C, Tang N, Liu X, Liang W, Xu W, Torchilin VP (2006) siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J Control Release 112(2): 229–239

    Article  CAS  Google Scholar 

  • Zhang Q, Tang J, Fu L, Ran R, Liu Y, Yuan M, He Q (2013) A pH-responsive α-helical cell penetrating peptide-mediated liposomal delivery system. Biomaterials 34(32):7980–7993

    Article  CAS  Google Scholar 

  • Zhang Q, Gao H, He Q (2015) Taming cell penetrating peptides: never too old to teach old dogs new tricks. Mol Pharm 12(9):3105–3118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, Y., He, Q. (2021). Preparation of Cell Penetrating Peptides-Mediated Targeting Drug Liposomes. In: Lu, WL., Qi, XR. (eds) Liposome-Based Drug Delivery Systems. Biomaterial Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49320-5_13

Download citation

Publish with us

Policies and ethics