Skip to main content

Liposomes in Drug Delivery: Status and Advances

  • Reference work entry
  • First Online:
Liposome-Based Drug Delivery Systems

Part of the book series: Biomaterial Engineering ((BIOENG))

Abstract

Liposomal drug delivery system has made evident breakthrough and innovation in the fields of drug treatment. The objectives of this chapter are to briefly review the features, classification, major preparation materials and methods, and application of drug liposomes. Liposomes have shown excellent biocompatibility; are able to protect drug from direct exposure in blood system; are capable of carrying hydrophilic, hydrophobic, and amphipathic agents; and have targeting natures in human body. According to different targeting strategies, liposomes are classified into passive, active, and physicochemical targeting liposomes. The major materials of liposomes are phospholipids and cholesterol. The manufacturing technology of drug liposomes is becoming mature now, consisting of film dispersion, reverse-phase evaporation, chemical gradient loading, and the other encapsulation methods. Tens of drug liposomes have been approved for clinical use meanwhile a number of drug liposomes are undergoing clinical trial evaluations. During clinical trials and uses, the liposomes have been evidenced to have an optimal drug delivery efficiency and better efficacy, despite the anticancer drug liposomes may lead to new side effects like hand-foot syndrome. The drug liposomes can be enriched into the tumor site, hence demonstrating a better efficacy and a reduced adverse reaction such as cardiotoxicity. Besides, the liposomal formulations are capable of potentiating efficacy of anticancer drugs by circumventing multidrug resistance of cancers and cancer stem cells and by transferring drug across the blood-brain barrier (BBB). These new functions have been evidenced in laboratory observations but need further clinical evaluations. The review demonstrates that the liposomes are promising drug delivery systems in the fields of anticancer, anti-infection, pain management, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  CAS  Google Scholar 

  • Awasthi VD, Garcia D, Goins BA, Phillips WT (2003) Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits. Int J Pharm 253(1–2):121–132

    Article  CAS  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965a) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252

    Article  CAS  Google Scholar 

  • Bangham AD, Standish MM, Weissmann G (1965b) The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol 13(1):253–259

    Article  CAS  Google Scholar 

  • Barenholz Y (2012) Doxil®- the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  Google Scholar 

  • Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298(4):1015–1019

    Article  CAS  Google Scholar 

  • Benesch M, Urban C (2008) Liposomal cytarabine for leukemic and lymphomatous meningitis: recent developments. Expert Opin Pharmacother 9(2):301–309

    Article  CAS  Google Scholar 

  • Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5(10):786–795

    Article  CAS  Google Scholar 

  • Chopra R, Blair S, Strang J, Cervi P, Patterson KG, Goldstone AH (1991) Liposomal amphotericin B (AmBisome) in the treatment of fungal infections in neutropenic patients. J Antimicrob Chemother 28(Suppl B):93–104

    Article  Google Scholar 

  • Cogswell S, Berger S, Waterhouse D, Bally MB, Wasan EK (2006) A parenteral econazole formulation using a novel micelle-to-liposome transfer method: in vitro characterization and tumor growth delay in a breast cancer xenograft model. Pharm Res 23(11):2575–2585

    Article  CAS  Google Scholar 

  • Crosasso P, Ceruti M, Brusa P, Arpicco S, Dosio F, Cattel L (2000) Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Release 63(1–2):19–30

    Article  CAS  Google Scholar 

  • Deamer DW (1978) Preparation and properties of ether-injection liposomes. Ann N Y Acad Sci 308:250–258

    Article  CAS  Google Scholar 

  • Dragovich T, Mendelson D, Kurtin S, Richardson K, Von Hoff D, Hoos A (2006) A Phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemother Pharmacol 58(6):759–764

    Article  CAS  Google Scholar 

  • Fanciullino R, Giacometti S, Aubert C, Fina F, Martin PM, Piccerelle P, Ciccolini J (2005) Development of stealth liposome formulation of 2′-deoxyinosine as 5-fluorouracil modulator: in vitro and in vivo study. Pharm Res 22(12):2051–2057

    Article  CAS  Google Scholar 

  • Gambling D, Hughes T, Martin G, Horton W, Manvelian G (2005) A comparison of DepoDur, a novel, single-dose extended-release epidural morphine, with standard epidural morphine for pain relief after lower abdominal surgery. Anesth Analg 100(4):1065–1074

    Article  CAS  Google Scholar 

  • Garg M, Garg BR, Jain S, Mishra P, Sharma RK, Mishra AK, Dutta T, Jain NK (2008) Radiolabeling, pharmacoscintigraphic evaluation and antiretroviral efficacy of stavudine loaded 99mTc labeled galactosylated liposomes. Eur J Pharm Sci 33(3):271–281

    Article  CAS  Google Scholar 

  • Gregoriadis G, Ryman BE (1971) Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J 124(5). 58P

    Google Scholar 

  • Hansen AH, Mouritsen OG, Arouri A (2015) Enzymatic action of phospholipase A2 on liposomal drug delivery systems. Int J Pharm 491(1–2):49–57

    Article  CAS  Google Scholar 

  • Haran G, Cohen R, Bar LK, Barenholz Y (1993) Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta 1151(2):201–215

    Article  CAS  Google Scholar 

  • Harrington KJ, Lewanski CR, Northcote AD, Whittaker J, Wellbank H, Vile RG et al (2001) Phase I-II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer. Ann Oncol 12(4):493–496

    Article  CAS  Google Scholar 

  • Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A 93(24):14164–14169

    Article  CAS  Google Scholar 

  • Igarashi A, Konno H, Tanaka T, Nakamura S, Sadzuka Y, Hirano T, Fujise Y (2003) Liposomal photofrin enhances therapeutic efficacy of photodynamic therapy against the human gastric cancer. Toxicol Lett 145(2):133–141

    Article  CAS  Google Scholar 

  • Imanaka H, Koide H, Shimizu K, Asai T, Kinouchi Shimizu N, Ishikado A, Makino T, Oku N (2008) Chemoprevention of tumor metastasis by liposomal beta-sitosterol intake. Biol Pharm Bull 31(3):400–404

    Article  CAS  Google Scholar 

  • Júnior AD, Mota LG, Nunan EA, Wainstein AJ, Wainstein AP, Leal AS, Cardoso VN, De Oliveira MC (2007) Tissue distribution evaluation of stealth pH-sensitive liposomal cisplatin versus free cisplatin in Ehrlich tumor-bearing mice. Life Sci 80(7):659–664

    Article  Google Scholar 

  • Kakinuma K, Tanaka R, Takahashi H, Sekihara Y, Watanabe M, Kuroki M (1996) Drug delivery to the brain using thermosensitive liposome and local hyperthermia. Int J Hyperth 12(1):157–165

    Article  CAS  Google Scholar 

  • Kheirolomoom A, Kruse DE, Qin S, Watson KE, Lai CY, Young LJ, Cardiff RD, Ferrara KW (2010) Enhanced in vivo bioluminescence imaging using liposomal luciferin delivery system. J Control Release 141(2):128–136

    Article  CAS  Google Scholar 

  • Kono K, Takashima M, Yuba E, Harada A, Hiramatsu Y, Kitagawa H, Otani T, Maruyama K, Aoshima S (2015) Multifunctional liposomes having target specificity, temperature-triggered release, and near-infrared fluorescence imaging for tumor-specific chemotherapy. J Control Release 216:69–77

    Article  CAS  Google Scholar 

  • Li C, Deng Y (2004) A novel method for the preparation of liposomes: freeze drying of monophase solutions. J Pharm Sci 93(6):1403–1414

    Article  CAS  Google Scholar 

  • Li N, Zhuang C, Wang M, Sun X, Nie S, Pan W (2009) Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int J Pharm 379(1):131–138

    Article  CAS  Google Scholar 

  • Li XY, Zhao Y, Sun MG, Shi JF, Ju RJ, Zhang CX, Li XT, Zhao WY, Mu LM, Zeng F, Lou JN, Lu WL (2014) Multifunctional liposomes loaded with paclitaxel and artemether for treatment of invasive brain glioma. Biomaterials 35(21):5591–5604

    Article  CAS  Google Scholar 

  • Loureiro JA, Gomes B, Fricker G, Cardoso I, Ribeiro CA, Gaiteiro C, Coelho MA, Pereira Mdo C, Rocha S (2015) Dual ligand immunoliposomes for drug delivery to the brain. Colloids Surf B Biointerfaces 134:213–219

    Article  CAS  Google Scholar 

  • Ma X, Zhou J, Zhang CX, Li XY, Li N, Ju RJ, Shi JF, Sun MG, Zhao WY, Mu LM, Yan Y, Lu WL (2013) Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting berberine liposomes. Biomaterials 34(18):4452–4465

    Article  CAS  Google Scholar 

  • Matsumura Y, Gotoh M, Muro K, Yamada Y, Shirao K, Shimada Y et al (2004) Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 15(3):517–525

    Article  CAS  Google Scholar 

  • Men Y, Wang XX, Li RJ, Zhang Y, Tian W, Yao HJ, Ju RJ, Ying X, Zhou J, Li N, Zhang L, Yu Y, Lu WL (2011) The efficacy of mitochondrial targeting antiresistant epirubicin liposomes in treating resistant leukemia in animals. Int J Nanomedicine 6:3125–3137

    CAS  Google Scholar 

  • Miller KK, Gorcey L, McLellan BN (2014) Chemotherapy–induced hand-foot syndrome and nail changes: a review of clinical presentation, etiology, pathogenesis, and management. J Am Acad Dermatol 71(4):787–794

    Article  Google Scholar 

  • Mozafari MR (2005) Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 10(4):711–719

    CAS  Google Scholar 

  • Mu LM, Ju RJ, Liu R, Bu YZ, Zhang JY, Li XQ, Zeng F, Lu WL (2017) Dual-functional drug liposomes in treatment of resistant cancers. Adv Drug Deliv Rev 115:46–56

    Article  CAS  Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003

    Article  CAS  Google Scholar 

  • Poon RT, Borys N (2009) Lyso-thermosensitive liposomal doxorubicin: a novel approach to enhance efficacy of thermal ablation of liver cancer. Expert Opin Pharmacother 10(2):333–343

    Article  CAS  Google Scholar 

  • Pratt G, Wiles ME, Rawstron AC, Davies FE, Fenton JA, Proffitt JA, Child JA, Smith GM, Morgan GJ (1998) Liposomal daunorubicin: in vitro and in vivo efficacy in multiple myeloma. Hematol Oncol 16(2):47–55

    Article  CAS  Google Scholar 

  • Qiao Y, Huang X, Nimmagadda S, Bai R, Staedtke V, Foss CA, Cheong I, Holdhoff M, Kato Y, Pomper MG, Riggins GJ, Kinzler KW, Diaz LA Jr, Vogelstein B, Zhou S (2011) A robust approach to enhance tumor-selective accumulation of nanoparticles. Oncotarget 2(1–2):59–68

    Article  Google Scholar 

  • Qin J, Chen D, Lu W, Xu H, Yan C, Hu H, Chen B, Qiao M, Zhao X (2008) Preparation, characterization, and evaluation of liposomal ferulic acid in vitro and in vivo. Drug Dev Ind Pharm 34(6):602–608

    Article  CAS  Google Scholar 

  • Rodriguez MA, Pytlik R, Kozak T, Chhanabhai M, Gascoyne R, Lu B, Deitcher SR, Winter JN, Marqibo Investigators (2009) Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma: report of the pivotal phase 2 study. Cancer 115(15):3475–3482

    Article  CAS  Google Scholar 

  • Rudin CM, Marshall JL, Huang CH, Kindler HL, Zhang C, Kumar D et al (2004) Delivery of a liposomal c-raf-1 antisense oligonucleotide by weekly bolus dosing in patients with advanced solid tumors: a phase I study. Clin Cancer Res 10(21):7244–7251

    Article  CAS  Google Scholar 

  • Sakai H, Gotoh T, Imura T, Sakai K, Otake K, Abe M (2008) Preparation and properties of liposomes composed of various phospholipids with different hydrophobic chains using a supercritical reverse phase evaporation method. J Oleo Sci 57(11):613–621

    Article  CAS  Google Scholar 

  • Sankhala KK, Mita AC, Adinin R, Wood L, Beeram M, Bullock S, Yamagata N, Matsuno K, Fujisawa T, Phan A (2009) A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin. J Clin Oncol 27:2535

    Article  Google Scholar 

  • Sarris AH, Hagemeister F, Romaguera J, Rodriguez MA, McLaughlin P, Tsimberidou AM, Medeiros LJ, Samuels B, Pate O, Oholendt M, Kantarjian H, Burge C, Cabanillas F (2000) Liposomal vincristine in relapsed non-Hodgkin's lymphomas: early results of an ongoing phase II trial. Ann Oncol 11(1):69–72

    Article  CAS  Google Scholar 

  • Seetharamu N, Kim E, Hochster H, Martin F, Muggia F (2010) Phase II study of liposomal cisplatin (SPI-77) in platinum-sensitive recurrences of ovarian cancer. Anticancer Res 30(2):541–545

    CAS  Google Scholar 

  • Seiden MV, Muggia F, Astrow A, Matulonis U, Campos S, Roche M et al (2004) A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol Oncol 93(1):229–232

    Article  CAS  Google Scholar 

  • Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M et al (2013) Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21(5):1096–1103

    Article  CAS  Google Scholar 

  • Sriraman SK, Salzano G, Sarisozen C, Torchilin V (2016) Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid. Eur J Pharm Biopharm. https://doi.org/10.1016/j.ejpb.2016.05.023. pii: S0939-6411(16)30203-X

  • Swenson CE, Perkins WR, Roberts P, Janoff AS (2001) Liposome technology and the development of Myocetâ„¢ (liposomal doxorubicin citrate). Breast 10(Suppl 2):1–7

    Article  Google Scholar 

  • Szoka F Jr, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A 75(9):4194–4198

    Article  CAS  Google Scholar 

  • Taiwanese Gynecologic Oncology Group, Chou HH, Wang KL, Chen CA, Wei LH, Lai CH, Hsieh CY, Yang YC, Twu NF, Chang TC, Yen MS (2006) Pegylated liposomal doxorubicin (Lipo-Dox) for platinum-resistant or refractory epithelial ovarian carcinoma: a Taiwanese gynecologic oncology group study with long-term follow-up. Gynecol Oncol 101(3):423–428

    Article  Google Scholar 

  • Wang XX, Li YB, Yao HJ, Ju RJ, Zhang Y, Li RJ, Yu Y, Zhang L, Lu WL (2011) The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 32(24):5673–5687

    Article  CAS  Google Scholar 

  • Wang L, Geng D, Su H (2014) Safe and efficient pH sensitive tumor targeting modified liposomes with minimal cytotoxicity. Colloids Surf B Biointerfaces 123:395–402

    Article  CAS  Google Scholar 

  • Wetzler M, Thomas DA, Wang ES, Shepard R, Ford LA, Heffner TL et al (2013) Phase I/II trial of nanomolecular liposomal annamycin in adult patients with relapsed/refractory acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk 13(4):430–434

    Article  CAS  Google Scholar 

  • Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113(2):171–199

    Article  CAS  Google Scholar 

  • Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R (1978) Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202(4374):1290–1293

    Article  CAS  Google Scholar 

  • Yokoe J, Sakuragi S, Yamamoto K, Teragaki T, Ogawara K, Higaki K, Katayama N, Kai T, Sato M, Kimura T (2008) Albumin-conjugated PEG liposome enhances tumor distribution of liposomal doxorubicin in rats. Int J Pharm 353(1–2):28–34

    Article  CAS  Google Scholar 

  • Zeng F, Ju RJ, Liu L et al (2015) Application of functional vincristine plus dasatinib liposomes to deletion of vasculogenic mimicry channels in triple-negative breast cancer. Oncotarget 6(34):36625–36642

    Article  Google Scholar 

  • Zhang Q, Huang XE, Gao LL (2009) A clinical study on the premedication of paclitaxel liposome in the treatment of solid tumors. Biomed Pharmacother 63(8):603–607

    Article  CAS  Google Scholar 

  • Zucker D, Barenholz Y (2010) Optimization of vincristine-topotecan combination--paving the way for improved chemotherapy regimens by nanoliposomes. J Control Release 146(3):326–333

    Article  CAS  Google Scholar 

  • Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D, Morgan R et al (2014) Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci U S A 111(31):11449–11454

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Rong Qi or Wan-Liang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hu, YJ., Ju, RJ., Zeng, F., Qi, XR., Lu, WL. (2021). Liposomes in Drug Delivery: Status and Advances. In: Lu, WL., Qi, XR. (eds) Liposome-Based Drug Delivery Systems. Biomaterial Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49320-5_1

Download citation

Publish with us

Policies and ethics