Skip to main content

Dual-Modified siRNA-Loaded Liposomes for Prostate Cancer Therapy

  • Living reference work entry
  • First Online:
  • 225 Accesses

Part of the book series: Biomaterial Engineering ((BIOENG))

Abstract

Prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) are generally upregulated in the hormone-refractory stage of prostate cancer (PC). Previous studies have demonstrated that these two proteins are potential targets for specific delivery of functional molecules to advanced PC, not merely as sensitive markers for PC diagnosis. In this study, a dual-modified liposome was constructed with folate and PSA-responsive peptide (PRP) incorporated. The folate moiety binds quickly to PSMA-positive tumors, and the PSA-responsive sequence undergoes cleavage in response to the overexpressed PSA in tumor tissues. The activated liposomes (folate and cell-penetrating peptide dual modifications) are subsequently taken up by the tumor cells via the cell-penetrating activity of polyarginine and receptor-mediated endocytosis. Researches based on prostate tumor cells indicated that the dual-modified liposomes presented reinforced cellular uptake and augmented cell apoptosis following treatment with the exogenous enzymatically active PSA. In terms of targeting potency and therapeutic capacity, the development of a PSA-responsive and PSMA-mediated liposome offers a promising platform for therapy and diagnosis of PSMA-/PSA-positive PC.

This is a preview of subscription content, log in via an institution.

References

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750–763

    Article  CAS  Google Scholar 

  • Chang PV, Dube DH, Sletten EM, Bertozzi CR (2010) A strategy for the selective imaging of glycans using caged metabolic precursors. J Am Chem Soc 132(28):9516–9518

    Article  CAS  Google Scholar 

  • Chen Y, Wang G, Kong D, Zhang Z, Yang K, Liu R, Zhao W, Xu Y (2011) Double-targeted and double-enhanced suicide gene therapy mediated by generation 5 polyamidoamine dendrimers for prostate cancer. Mol Carcinog 52(3):237–246

    Article  Google Scholar 

  • Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, Meyerholz DK, McCaffrey AP, McNamara JO 2nd, Giangrande PH (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27(9):839–849

    Article  CAS  Google Scholar 

  • Galsky MD, Small AC, Tsao CK, Oh WK (2012) Clinical development of novel therapeutics for castration-resistant prostate cancer: historic challenges and recent successes. CA Cancer J Clin 62(5):299–308

    Article  Google Scholar 

  • Gao W, Xiang B, Meng TT, Liu F, Qi XR (2013) Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides. Biomaterials 34(16):4137–4149

    Article  CAS  Google Scholar 

  • Gomella LG (2017) Prostate Cancer statistics: anything you want them to be. Can J Urol 24(1):8603–8604

    Google Scholar 

  • Gomes-da-Silva LC, Fonseca NA, Moura V, Pedroso de Lima MC, Simões S, Moreira JN (2012) Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res 45(7):1163–1171

    Article  CAS  Google Scholar 

  • Goun EA, Shinde R, Dehnert KW, Adams-Bond A, Wender PA, Contag CH, Franc BL (2006) Intracellular cargo delivery by an octaarginine transporter adapted to target prostate cancer cells through cell surface protease activation. Bioconjug Chem 17(3):787–796

    Article  CAS  Google Scholar 

  • Hattori Y, Maitani Y (2004) Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer. J Control Release 97(1):173–183

    Article  CAS  Google Scholar 

  • Hattori Y, Maitani Y (2005) Folate-linked nanoparticle-mediated suicide gene therapy in human prostate cancer and nasopharyngeal cancer with herpes simplex virus thymidine kinase. Cancer Gene Ther 12(10):796–809

    Article  CAS  Google Scholar 

  • Kesharwani P, Gajbhiye V, Jain NK (2012) A review of nanocarriers for the delivery of small interfering RNA. Biomaterials 33(29):7138–7150

    Article  CAS  Google Scholar 

  • Ma DX, Shi NQ, Qi XR (2011) Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells. Int J Pharm 419(1–2):200–208

    Article  CAS  Google Scholar 

  • McNamara JO 2nd, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24(8):1005–1015

    Article  CAS  Google Scholar 

  • Perner S, Hofer MD, Kim R, Shah RB, Li H, Moller P, Hautmann RE, Gschwend JE, Kuefer R, Rubin MA (2007) Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol 38(5):696–701

    Article  CAS  Google Scholar 

  • Regino CA, Wong KJ, Milenic DE, Holmes EH, Garmestani K, Choyke PL, Brechbiel MW (2009) Preclinical evaluation of a monoclonal antibody (3C6) specific for prostate-specific membrane antigen. Curr Radiopharm 2(1):9–17

    Article  CAS  Google Scholar 

  • Sethuraman VA, Bae YH (2007) TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 118(2):216–224

    Article  CAS  Google Scholar 

  • Shi NQ, Qi XR (2017) Taming the wildness of “Trojan-horse” peptides by charge-guided masking and protease-triggered demasking for the controlled delivery of antitumor agents. ACS Appl Mater Interfaces 9(12):10519–10529

    Article  CAS  Google Scholar 

  • Shi NQ, Gao W, Xiang B, Qi XR (2012) Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage. Int J Nanomedicine 7:1613–1621

    CAS  Google Scholar 

  • Shi NQ, Qi XR, Xiang B, Zhang Y (2014) A survey on “Trojan horse” peptides: opportunities, issues and controlled entry to “troy”. J Control Release 194:53–70

    Article  CAS  Google Scholar 

  • Strebhardt K, Ullrich A (2006) Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 6(4):321–330

    Article  CAS  Google Scholar 

  • Vaishnaw AK, Gollob J, Gamba-Vitalo C, Hutabarat R, Sah D, Meyers R, de Fougerolles T, Maraganore J (2010) A status report on RNAi therapeutics. Science 1(1):14

    Google Scholar 

  • Xiang B, Dong DW, Shi NQ, Gao W, Yang ZZ, Cui Y, Cao DY, Qi XR (2013) PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials 34(28):6976–6991

    Article  CAS  Google Scholar 

  • Xiang B, Jia XL, Qi JL, Yang LP, Sun WH, Yan X, Yang SK, Cao DY, Du Q, Qi XR (2017) Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system. Int J Nanomedicine 12:2385–2405

    Article  CAS  Google Scholar 

  • Yamamichi F, Matsuoka T, Shigemura K, Kawabata M, Shirakawa T, Fujisawa M (2012) Potential establishment of lung metastatic xenograft model of androgen receptor-positive and androgen-independent prostate cancer (C4-2B). Urology 80(4):951.e1–951.e7

    Article  Google Scholar 

  • Yao V, Berkman CE, Choi JK, O’Keefe DS, Bacich DJ (2010) Expression of prostate-specific membrane antigen (PSMA), increases cell folate uptake and proliferation and suggests a novel role for PSMA in the uptake of the non-polyglutamated folate, folic acid. Prostate 70(3):305–316

    Article  CAS  Google Scholar 

  • Yu T, Liu X, Bolcato-Bellemin AL, Wang Y, Liu C, Erbacher P, Qu F, Rocchi P, Behr JP, Peng L (2012) An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angew Chem Int Ed Engl 51(34):8478–8484

    Article  CAS  Google Scholar 

  • Zhu L, Kate P, Torchilin VP (2012) Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6(4):3491–3498

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xiang, B., Cao, DY. (2018). Dual-Modified siRNA-Loaded Liposomes for Prostate Cancer Therapy. In: Lu, WL., Qi, XR. (eds) Liposome-Based Drug Delivery Systems. Biomaterial Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49231-4_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49231-4_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49231-4

  • Online ISBN: 978-3-662-49231-4

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics