Observing Ecohydrological Processes: Challenges and Perspectives

Reference work entry
Part of the Ecohydrology book series (ECOH, volume 2)


The observation and measurement of ecohydrological processes have been witnessed a huge progress in terms of novel ideas, methodologies, and techniques. Many cutting-edge observing techniques, e.g., stable isotope, wireless sensor network, cosmic ray probe, multi-source remote sensing, are continuously introduced and widely applied. As the first chapter of this book, this chapter introduces the progresses, challenges, and perspectives of observing ecohydrological processes. We first introduced the key states and fluxes that control the ecohydrological processes and novel techniques that allow those controlling factors to be quantified. However, we found that knowledge gap remains, including: (1) improving the observation ability to understand and quantify the ecohydrological processes, (2) integrating multisource observations into a dynamics model to accurately estimate the state and flux variables of ecohydrological processes, (3) developing upscaling approaches through system observations to understand the scaling issue, and (4) estimating representativeness error to quantify the uncertainties. To this end, we pointed out the potential directions for filling these gaps, including: (1) to better translate remotely sensed data into information that helps us better understand ecohydrological processes and better inform land-surface models, (2) to better quantify the roles of subsurface processes in ecohydrological processes, (3) to develop observational systems that allow ecohydrological processes to be captured across different scales and across compartments, (4) to use well-instrumented watersheds as test beds of new concept for ecohydrological observations, (5) to combine monitoring and controllable and synthetic observation experiments, (6) to utilize technical advancements in new models, and (7) to integrate observation systems with integrated models, data services, and decision making. Overall, this chapter provides an insight into the-state-of-art of observing ecohydrological processes.


Ecohydrological processes Remote sensing Uncertainty Heterogeneity Scaling 



This work was supported by the National Natural Science Foundation of China (Grant No. 91425303), and the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA20100104.


  1. B.W. Abbott, V. Baranov, C. Mendoza-Lera, M. Nikolakopoulou, A. Harjung, T. Kolbe, M.N. Balasubramanian, T.N. Vaessen, F. Ciocca, A. Campeau, M.B. Wallin, P. Romeijn, M. Antonelli, J. Goncalves, T. Datry, A.M. Laverman, J.R. de Dreuzy, D.M. Hannah, S. Krause, C. Oldham, G. Pinay, Using multi-tracer inference to move beyond single-catchment ecohydrology. Earth Sci. Rev. 160, 19–42 (2016)CrossRefGoogle Scholar
  2. S.H. Alemohammad, D.B. McLaughlin, D. Entekhabi, Quantifying precipitation uncertainty for land data assimilation applications. Mon. Weather Rev. 143, 3276–3299 (2015)CrossRefGoogle Scholar
  3. S.P. Anderson, R.C. Bales, C.J. Duffy, Critical zone observatories: building a network to advance interdisciplinary study of Earth surface processes. Mineral. Mag. 72, 7–10 (2008)CrossRefGoogle Scholar
  4. M. Andreasen, K.H. Jensen, D. Desilets, T.E. Franz, M. Zreda, H.R. Bogena, M.C. Looms, Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone J. 16 (2017). Scholar
  5. W.G.M. Bastiaanssen, M. Menenti, R.A. Feddes, A.A.M. Holtslag, A remote sensing surface energy balance algorithm for land (SEBAL) - 1. Formulation. J. Hydrol. 212, 198–212 (1998)CrossRefGoogle Scholar
  6. K. Beven, Robert E. Horton’s perceptual model of infiltration processes. Hydrol. Process. 18, 3447–3460 (2004)CrossRefGoogle Scholar
  7. G. Blöschl, Scaling in hydrology. Hydrol. Process. 15, 709–711 (2001)CrossRefGoogle Scholar
  8. G. Blöschl, M. Sivapalan, Scale issues in hydrological modelling: A review. Hydrol. Process. 9, 251–290 (1995)CrossRefGoogle Scholar
  9. H.R. Bogena, M. Herbst, J.A. Huisman, U. Rosenbaum, A. Weuthen, H. Vereecken, Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J. 9, 1002–1013 (2010)CrossRefGoogle Scholar
  10. H. Bogena, R. Kunkel, T. Puetz, H. Vereecken, E. Kruger, S. Zacharias, P. Dietrich, U. Wollschlager, H. Kunstmann, H. Papen, H.P. Schmid, J.C. Munch, E. Priesack, M. Schwank, O. Bens, A. Brauer, E. Borg, I. Hajnsek, TERENO – long-term monitoring network for terrestrial environmental research. Hydrol. Wasserbewirtsch. 56, 138–143 (2012)Google Scholar
  11. O. Bonacci, T. Pipan, D.C. Culver, A framework for karst ecohydrology. Environ. Geol. 56, 891–900 (2009)CrossRefGoogle Scholar
  12. J.G. Canadell, H.A. Mooney, D.D. Baldocchi, J.A. Berry, J.R. Ehleringer, C.B. Field, S.T. Gower, D.Y. Hollinger, J.E. Hunt, R.B. Jackson, S.W. Running, G.R. Shaver, W. Steffen, S.E. Trumbore, R. Valentini, B.Y. Bond, Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding. Ecosystems 3, 115–130 (2000)CrossRefGoogle Scholar
  13. J.M. Chen, T.A. Black, Measuring leaf area index of plant canopies with branch architecture. Agric. For. Meteorol. 57, 1–12 (1991)CrossRefGoogle Scholar
  14. L. Chen, O.W. Frauenfeld, A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res.-Atmos. 119, 5767–5786 (2014)CrossRefGoogle Scholar
  15. D. Cline, S. Yueh, B. Chapman, B. Stankov, A. Gasiewski, D. Masters, K. Elder, R. Kelly, T.H. Painter, S. Miller, NASA cold land processes experiment (CLPX 2002/03): airborne remote sensing. J. Hydrometeorol. 9, 1427–1433 (2009)Google Scholar
  16. C.M. Debeer, H.S. Wheater, W.L. Quinton, S.K. Carey, R.E. Stewart, M.D. Mackay, P. Marsh, The changing cold regions network: observation, diagnosis and prediction of environmental change in the Saskatchewan and Mackenzie River Basins, Canada. Sci. China Earth Sci. 58, 46–60 (2015)CrossRefGoogle Scholar
  17. H.A.R. DeBruin, Time to think: reflections of a pre-pensioned scintillometer researcher. Bull. Am. Meteorol. Soc. 90, Es17–Es26 (2009)CrossRefGoogle Scholar
  18. K.A. Delin, S.P. Jackson, D.W. Johnson, S.C. Burleigh, R.R. Woodrow, J. Michael Mcauley, J.M. Dohm, F. Ip, T.P.A. Ferré, D.F. Rucker, Environmental studies with the sensor web: principles and practice. Sensors 5, 103–117 (2005)CrossRefGoogle Scholar
  19. Dong, X., H. Liu, Z. Wang, J. Shi, and T. Zhao, COM: the mission concept and payloads of a global water cycle observation mission, in 2014 IEEE Geoscience and Remote Sensing Symposium (2014), pp. 3338–3341Google Scholar
  20. M. Drusch, J. Moreno, U. Del Bello, R. Franco, Y. Goulas, A. Huth, S. Kraft, E.M. Middleton, F. Miglietta, G. Mohammed, L. Nedbal, U. Rascher, D. Schttemeyer, W. Verhoef, The FLuorescence EXplorer mission concept-ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 55, 1273–1284 (2017)CrossRefGoogle Scholar
  21. M. Durand, L.L. Fu, D.P. Lettenmaier, D.E. Alsdorf, E. Rodriguez, D. Esteban-Fernandez, The surface water and ocean topography mission: observing terrestrial surface water and oceanic submesoscale eddies. Proc. IEEE 98, 766–779 (2010)CrossRefGoogle Scholar
  22. P.S. Eagleson, Ecohydrology: Darwinian expression of vegetation form and function (Cambridge University Press, Cambridge, 2002)CrossRefGoogle Scholar
  23. D. Entekhabi, E.G. Njoku, P.E. O’Neill, K.H. Kellogg, W.T. Crow, W.N. Edelstein, J.K. Entin, S.D. Goodman, T.J. Jackson, J. Johnson, J. Kimball, J.R. Piepmeier, R.D. Koster, N. Martin, K.C. McDonald, M. Moghaddam, S. Moran, R. Reichle, J.C. Shi, M.W. Spencer, S.W. Thurman, L. Tsang, J. Van Zyl, The soil moisture active passive (SMAP) mission. Proc. IEEE 98, 704–716 (2010)CrossRefGoogle Scholar
  24. T. Foken, The energy balance closure problem: an overview. Ecol. Appl. 18, 1351–1367 (2008)CrossRefGoogle Scholar
  25. P. Gong, Progress in recent environmental applications of wireless sensor networks. J. Remote Sens. 14, 153–157 (2010)Google Scholar
  26. F. Gottardi, C. Obled, J. Gailhard, E. Paquet, Statistical reanalysis of precipitation fields based on ground network data and weather patterns: application over French mountains. J. Hydrol. 432, 154–167 (2012)CrossRefGoogle Scholar
  27. L. Guo, H. Lin, Critical zone research and observatories: current status and future perspectives. Vadose Zone J. 15(9) (2016). Scholar
  28. X.J. Han, H.J.H. Franssen, X. Li, Y.L. Zhang, C. Montzka, H. Vereecken, Joint assimilation of surface temperature and L-band microwave brightness temperature in land data assimilation. Vadose Zone J. 12(3), 155–175 (2013)CrossRefGoogle Scholar
  29. X.J. Han, R. Jin, X. Li, S.G. Wang, Soil moisture estimation using cosmic-ray soil moisture sensing at heterogeneous farmland. IEEE Geosci. Remote Sens. Lett. 11, 1659–1663 (2014)CrossRefGoogle Scholar
  30. X.J. Han, H.J.H. Franssen, M.Á.J. Bello, R. Rosolem, H. Bogena, F.M. Alzamora, Simultaneous soil moisture and properties estimation for a drip irrigated field by assimilating cosmic-ray neutron intensity. J. Hydrol. 539, 611–624 (2016)CrossRefGoogle Scholar
  31. J.K. Hart, K. Martinez, Environmental sensor networks: a revolution in the earth system science? Earth Sci. Rev. 78, 177–191 (2006)CrossRefGoogle Scholar
  32. A.Y. Hou, R.K. Kakar, S. Neeck, A.A. Azarbarzin, C.D. Kummerow, M. Kojima, R. Oki, K. Nakamura, T. Iguchi, The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 95, 701–722 (2014)CrossRefGoogle Scholar
  33. C.L. Huang, W.J. Chen, Y. Li, H.F. Shen, X. Li, Assimilating multi-source data into land surface model to simultaneously improve estimations of soil moisture, soil temperature, and surface turbulent fluxes in irrigated fields. Agric. For. Meteorol. 230–231, 142–156 (2016)CrossRefGoogle Scholar
  34. S. Hunt, Measurements of photosynthesis and respiration in plants. Physiol. Plant. 117, 314–325 (2003)CrossRefGoogle Scholar
  35. K. Imaoka, M. Kachi, H. Fujii, H. Murakami, M. Hori, A. Ono, T. Igarashi, K. Nakagawa, T. Oki, Y. Honda, H. Shimoda, Global change observation mission (GCOM) for monitoring carbon, water cycles, and climate change. Proc. IEEE 98, 717–734 (2010)CrossRefGoogle Scholar
  36. T. Jackson, Soil Moisture Experiments in 2002 and 2003. American Geophysical Union Meeting. May 28–31, 2002. Washington, DC, EOS Trans. of AGU,83:S191Google Scholar
  37. K.H. Jensen, T.H. Illangasekare, HOBE: a hydrological observatory. Vadose Zone J. 10, 1–7 (2011)CrossRefGoogle Scholar
  38. R. Jin, X. Li, B.P. Yan, X.H. Li, W.M. Luo, M.G. Ma, J.W. Guo, J. Kang, Z.L. Zhu, S.J. Zhao, A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China. IEEE Geosci. Remote Sens. Lett. 11, 2015–2019 (2014)CrossRefGoogle Scholar
  39. R. Jin, X. Li, S.M. Liu, Understanding the heterogeneity of soil moisture and evapotranspiration using multiscale observations from satellites, airborne sensors, and a ground-based observation matrix. IEEE Geosci. Remote Sens. Lett. 14, 2132–2135 (2017)CrossRefGoogle Scholar
  40. I. Jonckheere, S. Fleck, K. Nackaerts, B. Muys, P. Coppin, M. Weiss, F. Baret, Review of methods for in situ leaf area index determination – part I. theories, sensors and hemispherical photography. Agric. For. Meteorol. 121, 19–35 (2004)CrossRefGoogle Scholar
  41. J. Kang, X. Li, R. Jin, Y. Ge, J.F. Wang, J.H. Wang, Hybrid optimal design of the eco-hydrological wireless sensor metwork in the middle reach of the Heihe River Basin, China. Sensors 14, 19095–19114 (2014)CrossRefGoogle Scholar
  42. J. Kang, R. Jin, X. Li, Regression Kriging-based upscaling of soil moisture measurements from a wireless sensor network and multiresource remote sensing information over heterogeneous cropland. IEEE Geosci. Remote Sens. Lett. 12, 92–96 (2015)CrossRefGoogle Scholar
  43. Y.H. Kerr, P. Waldteufel, J.P. Wigneron, J. Martinuzzi, J. Font, M. Berger, Soil moisture retrieval from space: the soil moisture and ocean salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 39, 1729–1735 (2001)CrossRefGoogle Scholar
  44. Y.H. Kerr, P. Waldteufel, J.P. Wigneron, S. Delwart, F. Cabot, J. Boutin, M.J. Escorihuela, J. Font, N. Reul, C. Gruhier, S.E. Juglea, M.R. Drinkwater, A. Hahne, M. Martin-Neira, S. Mecklenburg, M. Martı, The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc. IEEE 98, 666–687 (2010)CrossRefGoogle Scholar
  45. J. Kleissl, J. Gomez, S.H. Hong, J.M.H. Hendrickx, T. Rahn, W.L. Defoor, Large aperture scintillometer intercomparison study. Bound.-Layer Meteorol. 128, 133–150 (2008)CrossRefGoogle Scholar
  46. X. Li, Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems. Sci. China Earth Sci. 57, 80–87 (2014)CrossRefGoogle Scholar
  47. X. Li, X.W. Li, Z.Y. Li, M.G. Ma, J. Wang, Q. Xiao, Q. Liu, T. Che, E.X. Chen, G.J. Yan, Z.Y. Hu, L.X. Zhang, R.Z. Chu, P.X. Su, Q.H. Liu, S.M. Liu, J.D. Wang, Z. Niu, Y. Chen, R. Jin, W.Z. Wang, Y.H. Ran, X.Z. Xin, H.Z. Ren, Watershed allied telemetry experimental research. J. Geophys. Res.-Atmos. 114 (2009).
  48. X. Li, G.D. Cheng, S.M. Liu, Q. Xiao, M.G. Ma, R. Jin, T. Che, Q.H. Liu, W.Z. Wang, Y. Qi, J.G. Wen, H.Y. Li, G.F. Zhu, J.W. Guo, Y.H. Ran, S.G. Wang, Z.L. Zhu, J. Zhou, X.L. Hu, Z.W. Xu, Heihe Watershed Allied Telemetry Experimental Research (HiWATER): scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 94, 1145–1160 (2013)CrossRefGoogle Scholar
  49. X. Li, S.M. Liu, Q. Xiao, M.G. Ma, R. Jin, T. Che, W.Z. Wang, X.L. Hu, Z.W. Xu, J.G. Wen, L.X. Wang, A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Sci Data 4, 170083 (2017). Scholar
  50. H.S. Lin, D. Wheeler, J. Bell, L. Wilding, Assessment of soil spatial variability at multiple scales. Ecol. Model. 182, 271–290 (2005)CrossRefGoogle Scholar
  51. H. Lin, H.J. Vogel, J. Seibert, Towards holistic studies of the Earth’s critical zone: hydropedology perspectives’ preface. Hydrol. Earth Syst. Sci. 14, 479–480 (2010)CrossRefGoogle Scholar
  52. C.M. Liu, Y.N. Chen, Z.X. Xu, Eco-hydrology and sustainable development in the arid regions of China preface. Hydrol. Process. 24, 127–128 (2010)CrossRefGoogle Scholar
  53. S.M. Liu, Z.W. Xu, W.Z. Wang, Z.Z. Jia, M.J. Zhu, J. Bai, J.M. Wang, A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 15, 1291–1306 (2011)CrossRefGoogle Scholar
  54. S.M. Liu, Z.W. Xu, Z.L. Zhu, Z.Z. Jia, M.J. Zhu, Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol. 487, 24–38 (2013)CrossRefGoogle Scholar
  55. S.M. Liu, Z.W. Xu, Q.Y. Zhao, T.R. Xu, Y. Ge, Y.F. Ma, L.S. Song, Z.L. Zhu, Z.Z. Jia, F. Zhang, Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric. For. Meteorol. 230, 97–113 (2016)CrossRefGoogle Scholar
  56. S.M. Li, X. Li, Z.W. Xu, The Heihe integrated observatory network: a basin-scale land surface processes observatory in China. Vadose Zone J., under review (2018)Google Scholar
  57. D. Liverman, J. Rockström, M. Visbek, R. Leemans, T. Abrahamse, B. Becker, R. D’Sousa, K. Jones, H. Mooney, I. Niang, Future Earth initial design (International Council for Science, Future Earth, Interim Secretariat, Paris, 2013)Google Scholar
  58. A. Ludi, F. Beyrich, C. Matzler, Determination of the turbulent temperature-humidity correlation from scintillometric measurements. Bound.-Layer Meteorol. 117, 525–550 (2005)CrossRefGoogle Scholar
  59. H. McNairn, T.J. Jackson, G. Wiseman, S. Belair, A. Berg, P. Bullock, A. Colliander, M.H. Cosh, S.B. Kim, R. Magagi, M. Moghaddam, E.G. Njoku, J.R. Adams, S. Homayouni, E.R. Ojo, T.L. Rowlandson, J.L. Shang, K. Goita, M. Hosseini, The soil moisture active passive validation experiment 2012 (SMAPVEX12): prelaunch calibration and validation of the SMAP soil moisture algorithms. IEEE Trans. Geosci. Remote Sens. 53, 2784–2801 (2015)CrossRefGoogle Scholar
  60. M. Meroni, M. Rossini, L. Guanter, L. Alonso, U. Rascher, R. Colombo, J. Moreno, Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. Remote Sens. Environ. 113, 2037–2051 (2009)CrossRefGoogle Scholar
  61. NRC, Earth science and applications from space: national imperatives for the next decade and beyond (National Academy Press, Washington, DC, 2007)Google Scholar
  62. X.D. Pan, X.J. Tian, X. Li, Z.H. Xie, A.M. Shao, C.Y. Lu, Assimilating Doppler radar radial velocity and reflectivity observations in the weather research and forecasting model by a proper orthogonal-decomposition-based ensemble, three-dimensional variational assimilation method. J. Geophys. Res.-Atmos. 117 (2012). Scholar
  63. X.D. Pan, X. Li, G.D. Cheng, Y. Hong, Effects of 4D-Var data assimilation using remote sensing precipitation products in a WRF model over the complex terrain of an arid region river basin. Remote Sens. 9, 963 (2017). Scholar
  64. R. Panciera, J.P. Walker, T.J. Jackson, D.A. Gray, M.A. Tanase, D. Ryu, A. Monerris, H. Yardley, C. Rudiger, X.L. Wu, Y. Gao, J.M. Hacker, The soil moisture active passive experiments (SMAPEx): toward soil moisture retrieval from the SMAP mission. IEEE Trans. Geosci. Remote Sens. 52, 490–507 (2014)CrossRefGoogle Scholar
  65. C. Prigent, Precipitation retrieval from space: an overview. Compt. Rendus Geosci. 342, 380–389 (2010)CrossRefGoogle Scholar
  66. Y.H. Qu, Y.Z. Zhang, J.D. Wang, A dynamic Bayesian network data fusion algorithm for estimating leaf area index using time-series data from in situ measurement to remote sensing observations. Int. J. Remote Sens. 33, 1106–1125 (2012)CrossRefGoogle Scholar
  67. Y.H. Qu, Y.Q. Zhu, W.C. Han, J.D. Wang, M.G. Ma, Crop leaf area index observations with a wireless sensor network and its potential for validating remote sensing products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sen. 7, 431–444 (2014)CrossRefGoogle Scholar
  68. M.R. Raupach, J.J. Finnigan, Scale issues in boundary-layer meteorology: surface energy balances in heterogeneous terrain. Hydrol. Process. 9, 589–612 (1995)CrossRefGoogle Scholar
  69. D.D. Richter, M.L. Mobley, Monitoring Earth’s critical zone. Science 326, 1067–1068 (2009)CrossRefGoogle Scholar
  70. S.W. Running, S.T. Gower, A general model of forest ecosystem processes for regional applications.2. Dynamic carbon allocation and nitrogen budgets. Tree Physiol. 9, 147–160 (1991)CrossRefGoogle Scholar
  71. K. Scipal, M. Arcioni, J. Chave, J. Dall, F. Fois, T. Le Toan, C.C. Lin, K. Papathanassiou, S. Quegan, F. Rocca, S. Saatchi, H. Shugart, L. Ulander, M. Williams, The BIOMASS mission 2014; an ESA Earth explorer candidate to measure the BIOMASS of the earth’s forests, in 2010 IEEE International Geoscience and Remote Sensing Symposium (2010), pp. 52–55Google Scholar
  72. P.J. Sellers, Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275, 502–509 (1997)CrossRefGoogle Scholar
  73. P.J. Sellers, F.G. Hall, G. Asrar, D.E. Strebel, R.E. Murphy, The First ISLSCP field experiment (FIFE). Bull. Am. Meteorol. Soc. 69, 22–27 (1987)CrossRefGoogle Scholar
  74. J.C. Shi, X.L. Dong, T.J. Zhao, J. Y. Du, L. M. Jiang, Y. Du, H. Liu, Z. Wang, D. B. Ji, C. Xiong, WCOM: the science scenario and objectives of a global water cycle observation mission, in 2014 IEEE Geoscience and Remote Sensing Symposium (2014), pp. 3646–3649Google Scholar
  75. G. Skofronick-Jackson, W.A. Petersen, W. Berg, C. Kidd, E.F. Stocker, D.B. Kirschbaum, R. Kakar, S.A. Braun, G.J. Huffman, T. Iguchi, P.E. Kirstetter, C. Kummerow, R. Meneghini, R. Oki, W.S. Olson, Y.N. Takayabu, K. Furukawa, T. Wilheit, The global precipitation measurement (GPM) mission for science and society. Bull. Am. Meteorol. Soc. 98, 1679–1695 (2017)CrossRefGoogle Scholar
  76. Z. Su, The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6, 85–99 (2002)CrossRefGoogle Scholar
  77. T. Le Toan, S. Quegan, M.W.J. Davidson, H. Balzter, P. Paillou, K. Papathanassiou, S. Plummer, F. Rocca, S. Saatchi, H. Shugart, L. Ulander, The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 115, 2850–2860 (2011)Google Scholar
  78. T.L. van Zyl, I. Simonis, G. McFerren, The sensor web: systems of sensor systems. Int. J. Digital Earth 2, 16–30 (2009)CrossRefGoogle Scholar
  79. H. Vereecken, T. Kamai, T. Harter, R. Kasteel, J. Hopmans, J. Vanderborght, Explaining soil moisture variability as a function of mean soil moisture: a stochastic unsaturated flow perspective. Geophys. Res. Lett. 34, 315–324 (2007)CrossRefGoogle Scholar
  80. H. Vereecken, J.A. Huisman, H. Bogena, J. Vanderborght, J.A. Vrugt, J.W. Hopmans, On the value of soil moisture measurements in vadose zone hydrology: a review. Water Resour. Res. 44, 253–270 (2008)Google Scholar
  81. K. Wang, R.E. Dickinson, A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev. Geophys. 50(2), RG2005 (2012). Scholar
  82. E. Ward, W. Buytaert, L. Peaver, H. Wheater, Evaluation of precipitation products over complex mountainous terrain: a water resources perspective. Adv. Water Resour. 34, 1222–1231 (2011)CrossRefGoogle Scholar
  83. J.A. Wiens, Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989)CrossRefGoogle Scholar
  84. Z.W. Xu, S.M. Liu, X. Li, S.J. Shi, J.M. Wang, Z.L. Zhu, T.R. Xu, W.Z. Wang, M.G. Ma, Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. J. Geophys. Res. Atmos. 118, 13,140–13,157 (2013)CrossRefGoogle Scholar
  85. K. Yang, J. Qin, L. Zhao, Y.Y. Chen, W.J. Tang, M.L. Han, Z. Lazhu, Q. Chen, N. Lv, B.H. Ding, H. Wu, C.G. Lin, A multi-scale soil moisture and freeze-thaw monitoring network on the Third Pole. Bull. Am. Meteorol. Soc. 94, 1907–1916 (2013)CrossRefGoogle Scholar
  86. S. Zacharias, P. Dietrich, H.J. Vogel, R. Seppelt, D. Borchardt, S. Klotz, F. Messner, G. Teutsch, TERENO – methodical approach for the implementation of a terrestrial observatory for Environmental Research in Central Germany, Consoil 2008: Theme B – Functions and Values of Soil-Water Systems; Understanding of Processes (2008), pp. 85–89Google Scholar
  87. G.F. Zhu, X. Li, K. Zhang, Z.Y. Ding, T. Han, J.Z. Ma, C.L. Huang, J.H. He, T. Ma, Multi-model ensemble prediction of terrestrial evapotranspiration across North China using Bayesian model averaging. Hydrol. Process. 30, 2861–2879 (2016)CrossRefGoogle Scholar
  88. M. Zreda, W.J. Shuttleworth, X. Zeng, C. Zweck, D. Desilets, T.E. Franz, R. Rosolem, COSMOS: the COsmic-ray soil moisture observing system. Hydrol. Earth Syst. Sci. 16, 4079–4099 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.CAS Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina
  3. 3.Agrosphere Institute (IBG-3)Forschungszentrum Jülich GmbHJülichGermany
  4. 4.Key Laboratory of Remote Sensing of Gansu Province, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina

Personalised recommendations