Skip to main content

Micrometeorological Methods to Determine Evapotranspiration

Book cover Observation and Measurement

Part of the book series: Ecohydrology ((ECOH))

Abstract

Evapotranspiration (ET) is a combination of two distinct processes, soil or water evaporation (E) and plant transpiration (T), that occur between plants and the atmosphere, soil and the atmosphere, and water and the atmosphere. ET is also an important link between the terrestrial ecosystem and hydrological processes. In this chapter, we focus primarily on ET measurements using micrometeorological methods. Three typical ET measurement techniques, namely, the Bowen ratio-energy balance, eddy covariance, and scintillometer methods, which have a long history and are used widely throughout the world, are introduced. A brief review of their theoretical background, installation and maintenance, data processing and quality control, and footprint is presented, in addition to a brief summary of the advantages and disadvantages of each method. Additionally, ET measurements at observational networks and intensive experiments are presented. The ET measurement methods differ in observational theory, temporal–spatial scales, and precision. Researchers can select a suitable method according to their research objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • N. Alavi, J.S. Warland, A.A. Berg, Filling gaps in evapotranspiration measurements for water budget studies: evaluation of a Kalman filtering approach. Agric. For. Meteorol. 141, 57–66 (2006)

    Article  Google Scholar 

  • R.G. Allen, L.S. Pereira, T.A. Howell, M.E. Jensen, Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 98, 899–920 (2011)

    Article  Google Scholar 

  • S.P. Anderson, R.C. Bales, C.J. Duffy, Critical zone observatories: building a network to advance interdisciplinary study of earth surface processes. Mineral. Mag. 72(1), 7–10 (2008)

    Article  CAS  Google Scholar 

  • J.C. André, J.P. Goutorbe, A. Perrier, HAPEX–MOBLIHY: a hydrologic atmospheric experiment for the study of water budget and evaporation flux at the climatic scale. Bull. Am. Meteorol. Soc. 67(2), 138–144 (1986)

    Article  Google Scholar 

  • E.L. Andreas, Two-wavelength method of measuring path-averaged turbulent surface heat fluxes. J. Atmos. Ocean. Technol. 62, 280–292 (1989)

    Article  Google Scholar 

  • J. Bai, S.M. Liu, X.P. Ding, L. Lu, A study of the processing method of large aperture scintillometer observation data. Adv. Earth Science 25(11), 1148–1165 (2010.) (In Chinese with English abstract)

    Google Scholar 

  • J. Bai, L. Jia, S.M. Liu, Z.W. Xu, G.C. Hu, M.J. Zhu, Characterizing the footprint of eddy covariance system and large aperture scintillometer measurements to validate satellite-based surface fluxes. IEEE Geosci. Remote Sens. Lett. 12(5), 943–947 (2015)

    Article  Google Scholar 

  • D. Baldocchi, R. Valentini, S. Running, W. Oechel, R. Dahlman, Strategies f or measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Glob. Chang. Biol. 2, 159–168 (1996)

    Article  Google Scholar 

  • D. Baldocchi, E. Falge, L.H. Gu, R. Olson, D. Hollinger, S. Running, P. Anthoni, C. Bernhofer, K. Davis, R. Evans, J. Fuentes, A. Goldstein, G. Katul, B. Law, X.H. Lee, Y. Malhi, T. Meyers, W. Munger, W. Oechel, K.T. Paw U, K. Pilegaard, H.P. Schmid, R. Valentini, S. Verma, T. Vesala, K. Wilson, S. Wofsy, FLUXNET: a net tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82(11), 2415–2434 (2001)

    Article  Google Scholar 

  • F. Beyrich, H. Mengelkamp, Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment – an overview. Bound.-Layer Meteorol. 121, 5–32 (2006)

    Article  Google Scholar 

  • F. Beyrich, H.J. Herzog, J. Neisser, The LIFASS project of DWD and the LITFASS-98 experiment: the project strategy and the experimental setup. Theor. Appl. Climatol. 73, 3–18 (2002)

    Article  Google Scholar 

  • F. Beyrich, J. Bange, O.K. Hartogensis, S. Raasch, M. Braam, D. van Dinther, D. Gräf, B. van Kesteren, A.C. van den Kroonenberg, B. Maronga, S. Martin, A.F. Moene, Towards a validation of scintillometer measurements: the LITFASS-2009 experiment. Bound.-Layer Meteorol. 144, 83–112 (2012)

    Article  Google Scholar 

  • H. Bogena, K. Schulz, H. Vereeken, Towards a network of observatories in terrestrial environmental research. Adv. Geosci. 9, 109–114 (2006)

    Article  Google Scholar 

  • I.S. Bowen, The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 27(6), 779–787 (1926)

    Article  CAS  Google Scholar 

  • P. Cellier, Y. Brunet, Flux–gradient relationships above tall plant canopies. Agric. For. Meteorol. 58, 93–117 (1992)

    Article  Google Scholar 

  • P. Cellier, A. Olioso, A simple system for automated long term Bowen ratio measurement. Agric. For. Meteorol. 66, 81–92 (1993)

    Article  Google Scholar 

  • D. Charuchittipan, W. Babel, M. Mauder, J.P. Leps, T. Foken, Extension of the averaging time in eddy-covariance measurements and its effect on the energy balance closure. Bound.-Layer Meteorol. 152(3), 303–327 (2014)

    Article  Google Scholar 

  • J.D. Cooper, Water use of a tea estate from soil moisture measurements. East Afr. Agric. For. J. 43, 102–121 (1979)

    Google Scholar 

  • H.A.R. De Bruin, Time to think, reflections of a pre-pensioned scintillometer researcher. Bull. Am. Meteorol. Soc. 90, ES17–ES26 (2009)

    Google Scholar 

  • H.A.R. De Bruin, J.M. Wang, Scintillometry: a review. ResearchGate (2017). https://www.researchgate.net/pulications/316285424

  • D. Dragoni, A.N. Lakso, R.M. Piccioni, Transpiration of apple trees in a humid climate using heat pulse sap flow gauges calibrated with whole-canopy gas exchange chambers. Agric. For. Meteorol. 130, 85–94 (2005)

    Article  Google Scholar 

  • A. Ershadi, M.F. McCabe, J.P. Evans, N.W. Chaney, E.F. Wood, Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agric. For. Meteorol. 187, 46–61 (2014)

    Article  Google Scholar 

  • J. Evans, H.A.R. De Bruin, The effective height of a two-wavelength scintillometer system. Bound.-Layer Meteorol. 141(1), 165–177 (2011)

    Article  Google Scholar 

  • E. Falge, D.D. Baldocchi, R. Olson, P. Anthoni, M. Aubinet, C. Bernhofer, G. Burba, R. Ceulemans, R. Clement, H. Dolman, A. Granier, P. Gross, T. Grünwald, D. Hollinger, N.O. Jensen, G. Katul, P. Keronen, A. Kowalski, C.T. Lai, B.E. Law, T. Meyers, J. Moncrieff, E. Moors, J.W. Munger, K. Pilegaard, ü. Rannik, A. Rebmann, C. Suyker, J. Tenhunen, K. Tu, S. Verma, T. Vesala, K. Wilson, S. Wofsy, Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 107, 43–69 (2001)

    Article  Google Scholar 

  • C. Feigenwinter, C. Bernhofer, R. Vogt, The influence of advection on the short term CO2-budget in an above a forest canopy. Bound.-Layer Meteorol. 113, 201–224 (2004)

    Article  Google Scholar 

  • P.L. Finkelstein, P.F. Sims, Sampling error in eddy correlation flux measurements. J. Geophys. Res. 106(D4), 3503–3509 (2001)

    Article  CAS  Google Scholar 

  • J. Finnigan, The footprint concept in complex terrain. Agric. For. Meteorol. 127, 117–129 (2004)

    Article  Google Scholar 

  • T.K. Flesch, J.D. Wilson, E. Yee, Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions. J. Appl. Meteorol. 34(6), 1320–1332 (1995)

    Article  Google Scholar 

  • T. Foken, The energy balance closure problem: an overview. Ecol. Appl. 18(6), 1351–1367 (2008)

    Article  Google Scholar 

  • T. Foken, S.P. Oncley, Results of the workshop Instrumental and methodical problems of land surface flux measurements. Bull. Am. Meteorol. Soc. 76, 1191–1193 (1995)

    Google Scholar 

  • T. Foken, B. Wichura, Tools for quality assessment of surface-based flux measurements. Agric. For. Meteorol. 78, 83–105 (1996)

    Article  Google Scholar 

  • T. Foken, M. Göckede, M. Mauder, L. Mahrt, B. Amiro, W. Munger, Post-field data quality control, in Handbook of Micrometeorology, ed. by X. Lee et al. (Kluwer, Dordrecht, 2004), pp. 181–208

    Google Scholar 

  • T. Foken, M. Mauder, C. Liebethal, F. Wimmer, F. Beyrich, J.P. Leps, S. Raasch, H.A.R. De Bruin, W.M.L. Meijninger, J. Bange, Energy balance closure for the LITFASS-2003 experiment. Theor. Appl. Climatol. 101, 149–160 (2010)

    Article  Google Scholar 

  • T. Foken, M. Aubinet, R. Leuning, The eddy covariance method, in Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer Atmospheric Sciences, ed. by M. Aubinet et al. (Springer, Dordrecht, 2012). https://doi.org/10.1007/978-94-007-2351-1_1

  • L.J. Fritschen, C.L. Fritschen, Bowen ratio energy balance method, in Micrometeorology in Agricultural Systems, ed. by J.L. Hatfield, J.M. Baker. Agronomy Series, vol. 47 (American Society of Agronomy, Madison, 2005), pp. 397–405

    Google Scholar 

  • L.J. Fritschen, J.R. Simpson, Surface energy balance and radiation systems: general description and improvements. J. Appl. Meteorol. 28, 680–689 (1989)

    Article  Google Scholar 

  • L.J. Fritschen, L.W. Gay, J.R. Simpson, The effect of a moisture step change and advective conditions on the energy balance components of irrigated alfalfa, in Proceedings of the 16th Conference on Agricultural and Forest Meteorology, American Meteorological Society, Boston, 21–24 May 1983, pp. 83–86

    Google Scholar 

  • W.U. Garstka, Design of the automatic recording in-place lysimeters near Coshocton, Ohio. Soil Sci. Soc. Am. Proc. 2, 555–559 (1937)

    Article  CAS  Google Scholar 

  • J.P. Goutorbe, T. Lebel, A. Tinga, P. Bessemoulin, J. Brouwer, A.J. Dolman, E.T. Engman, J.H.C. Gash, M. Hoepffner, P. Kabat, Y.H. Kerr, B. Monteny, S. Prince, F. Said, P. Sellers, J.S. Wallace, HAPEX-Sahel: a large-scale study of land–atmosphere interactions in the semi-arid tropics. Ann. Geophys. 12(1), 53–64 (1994)

    Article  Google Scholar 

  • S. Halldin, S.E. Gryning, L. Gottschalk, A. Jochum, L.C. Lundin, A.A. Van de Griend, Energy, water and carbon exchange in a boreal forest landscape – NOPEX experiences. Agric. For. Meteorol. 98–99, 5–29 (1999)

    Article  Google Scholar 

  • O.K. Hartogensis, H.A.R. De Bruin, Monin–Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Bound.-Layer Meteorol. 116(2), 253–276 (2005)

    Article  Google Scholar 

  • O.K. Hartogensis, C.J. Watts, J.C. Rodriguez, H.A.R. De Bruin, Derivation of an effective height for scintillometers: La Poza experiment in northwest Mexico. J. Hydrometeorol. 4, 915–928 (2003)

    Article  Google Scholar 

  • J.L. Heilman, C.L. Brittin, C.M.U. Neale, Fetch requirements for Bowen ratio measurements of latent and sensible heat fluxes. Agric. For. Meteorol. 44, 261–273 (1989)

    Article  Google Scholar 

  • B. Heusinkverld, A. Jacobs, A. Holtslag, et al., Surface energy balance closure in an arid region: role of soil heat flux. Agric. For. Meteorol. 122, 21–37 (2004)

    Article  Google Scholar 

  • R.J. Hill, R.A. Bohlander, S.F. Clifford, R.W. McMillan, J.T. Priestly, W.P. Schoenfeld, Turbulence-induced millimeter-wave scintillation compared with micrometeorological measurements. IEEE Trans. Geosci. Remote Sens. 26, 330–342 (1988)

    Article  Google Scholar 

  • J.C.B. Hoedjes, R.M. Zuurbier, C.J. Watts, Large aperture scintillometer used over a homogeneous irrigated area, partly affected by regional advection. Bound.-Layer Meteorol. 105, 99–117 (2002)

    Article  Google Scholar 

  • D.Y. Hollinger, A.D. Richardson, Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiol. 25, 873–885 (2005)

    Article  CAS  Google Scholar 

  • T.W. Horst, J.C. Weil, Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound.-Layer Meteorol. 59, 279–296 (1992)

    Article  Google Scholar 

  • T.A. Howell, A.D. Schneider, M.E. Jensen, History of lysimeter design and use for evapotranspiration measurements, in Lysimeters for Evapotranspiration and Environmental Measurements, IR Diy/ASCE/Honolulu, 23–25 July 1991, pp. 1–9

    Google Scholar 

  • C.I. Hsieh, G. Katul, T.W. Chi, An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour. 23(7), 765–772 (2000)

    Article  Google Scholar 

  • D.F. Hui, S. Wan, B. Su, G. Katul, R. Monson, Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimation. Agric. For. Meteorol. 121(1–2), 93–111 (2004)

    Article  Google Scholar 

  • K.H. Jensen, T.H. Illangasekare, HOBE: a hydrological observatory. Vadose Zone J. 10, 1–7 (2011)

    Article  Google Scholar 

  • Z.Z. Jia, S.M. Liu, Z.W. Xu, Y.J. Chen, M.J. Zhu, Validation of remotely sensed evapotranspiration over the Hai River Basin, China. J. Geophys. Res. 117, D13113 (2012). https://doi.org/10.1029/2011JD017037

    Google Scholar 

  • R. Jin, X. Li, B.P. Yan, X.H. Li, W.M. Luo, M.G. Ma, J.W. Guo, J. Kang, Z.L. Zhu, A nested eco-hydrological wireless sensor network for capturing surface heterogeneity in the middle-reach of Heihe River Basin, China. IEEE Geosci. Remote Sens. Lett. 11(11), 2015–2019 (2014)

    Article  Google Scholar 

  • M. Khalil, M. Sakai, M. Mizoguchi, T. Miyazaki, Current and prospective applications of Zero Flux Plane (ZFP) method. J. Jpn. Soc. Soil Phys. 95, 75–90 (2003)

    Google Scholar 

  • J. Kleissl, J. Gomez, S.H. Hong, Large aperture scintillometer intercomparison study. Bound.-Layer Meteorol. 128, 133–150 (2009)

    Article  Google Scholar 

  • R. Kormann, F.X. Meixner, An analytic footprint model for neutral stratification. Bound.-Layer Meteorol. 99, 207–224 (2001)

    Article  Google Scholar 

  • M.R. Kuhlman, H. Loescher, R. Leonard, R. Farnsworth, T.E. Dawson, E.F. Kelly, A new engagement model to complete and operate the national ecological observatory network. Bull. Ecol. Soc. Am. 97, 283–287 (2016)

    Article  Google Scholar 

  • D. Lenschow, J. Mann, L. Kristensen, How long is long enough when measuring fluxes and other turbulence statistics? J. Atmos. Ocean. Technol. 11(3), 661–673 (1994)

    Article  Google Scholar 

  • X. Li, X.W. Li, Z.Y. Li, M.G. Ma, J. Wang, Q. Xiao, Q. Liu, T. Che, E.X. Chen, G.J. Yan, Z.Y. Hu, L.X. Zhang, R.Z. Chu, P.X. Su, Q.H. Liu, S.M. Liu, J.D. Wang, Z. Niu, Y. Chen, R. Jin, W.Z. Wang, Y.H. Ran, X.Z. Xin, H.Z. Ren, Watershed allied telemetry experimental research. J. Geophys. Res. 114, D22103 (2009). https://doi.org/10.1029/2008JD011590

    Article  Google Scholar 

  • X. Li, G.D. Cheng, S.M. Liu, Q. Xiao, M.G. Ma, R. Jin, T. Che, Q.H. Liu, W.Z. Wang, Y. Qi, J.G. Wen, H.Y. Li, G.F. Zhu, J.W. Guo, Y.H. Ran, S.G. Wang, Z.L. Zhu, J. Zhou, X.L. Hu, Z.W. Xu, Heihe watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 94(8), 1145–1160 (2013)

    Article  Google Scholar 

  • C. Liebethal, B. Huwe, T. Foken, Sensitivity analysis for two ground heat flux calculation approaches. Agric. For. Meteorol. 132, 253–262 (2005)

    Article  Google Scholar 

  • S.M. Liu, Z.W. Xu, W.Z. Wang, J. Bai, Z.Z. Jia, M.J. Zhu, J.M. Wang, A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 15(4), 1291–1306 (2011)

    Article  Google Scholar 

  • S.M. Liu, Z.W. Xu, Z.L. Zhu, Z.Z. Jia, M.J. Zhu, Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol. 487, 24–38 (2013)

    Article  Google Scholar 

  • S.M. Liu, Z.W. Xu, L.S. Song, Q.Y. Zhao, Y. Ge, T.R. Xu, Y.F. Ma, Z.L. Zhu, Z.Z. Jia, F. Zhang, Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric. For. Meteorol. 230–231, 97–113 (2016)

    Article  Google Scholar 

  • L. Lu, S.M. Liu, Z.W. Xu, J.M. Wang, X.W. Li, Results from measurements of large aperture scintillometer over different surfaces. J. Appl. Meteorol. Sci. 20(2), 171–178 (2009) (In Chinese with English abstract)

    Google Scholar 

  • A. Lüdi, F. Beyrich, C. Matzler, Determination of the turbulent temperature–humidity correlation from scintillometric measurements. Bound.-Layer Meteorol. 117, 525–550 (2005)

    Article  Google Scholar 

  • E. Malek, G.E. Bingham, Comparison of the Bowen ratio-energy balance and the water balance methods for the measurement of evapotranspiration. J. Hydrol. 146, 209–220 (1993)

    Article  Google Scholar 

  • J. Mann, D.H. Lenschow, Errors in airborne flux measurements. J. Geophys. Res. 99(7), 14519–14526 (1994)

    Article  Google Scholar 

  • M. Mauder, T. Foken, R. Clement, J.A. Elbers, W. Eugster, T. GrÃœnwald, B. Heusinkveld, O. Kolle, Quality control of CarboEurope flux data – part 2: inter-comparison of eddy-covariance software. Biogeosciences 5, 451–462 (2008)

    Article  CAS  Google Scholar 

  • K.J. McAneney, A.E. Green, M.S. Astill, Large-aperture scintillometry – the homogeneous case. Agric. For. Meteorol. 76, 149–162 (1995)

    Article  Google Scholar 

  • W.M.L. Meijninger, A.E. Green, O.K. Hartogensis, W. Kohsiek, C.B. Hoedjes, R.M. Zuurbier, H.A.R. De Bruin, Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface – Flevoland field experiment. Bound.-Layer Meteorol. 105, 63–83 (2002)

    Article  Google Scholar 

  • D. Michel, C. Jiménez, D.G. Miralles, M. Jung, M. Hirschi, A. Ershadi, B. Bartens, M.F. McCabe, J.B. Fisher, Q. Mu, S.I. Seneviratne, E.F. Wood, D. Fernández-Prieto, The WACMOS-ET project – part 1: tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrol. Earth Syst. Sci. 20, 803–822 (2016)

    Article  Google Scholar 

  • A.F. Moene, F. Beyrich, O.K. Hartogensis, Developments in scintillometer. Bull. Am. Meteorol. Soc. 90(5), 694–698 (2009)

    Article  Google Scholar 

  • J. Moncrieff, R. Clement, J. Finnigan, T. Meyers, Averaging, detrending, and filtering of eddy covariance time series, in Handbook of Micrometeorology, ed. by X. Lee et al. (Kluwer, Dordrecht, 2004), pp. 7–31

    Google Scholar 

  • T. Nakai, K. Shimoyama, Ultrasonic anemometer angle of attack errors under turbulent conditions. Agric. For. Meteorol. 162–163, 14–26 (2012)

    Article  Google Scholar 

  • J.O. Payero, C.M.U. Neale, J.L. Wright, R.G. Allen, Guidelines for validating Bowen ratio data. Trans. ASAE 46(4), 1051–1060 (2003)

    Article  Google Scholar 

  • P.J. Perez, F. Castellvi, M. Ibañez, J.I. Rosell, Assessment of reliability of Bowen ratio method for partitioning fluxes. Agric. For. Meteorol. 97, 141–150 (1999)

    Article  Google Scholar 

  • J.H. Prueger, J.L. Hatfield, J.K. Aase, J.L. Pikul Jr., Bowen-ratio comparisons with lysimetric evapotranspiration. Agron. J. 89, 730–736 (1997)

    Article  Google Scholar 

  • Y.H. Qu, Y.Q. Zhu, W.C. Han, J.D. Wang, M.G. Ma, Crop leaf area index observations with a wireless sensor network and its potential for validating remote sensing products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(2), 431–444 (2014)

    Article  Google Scholar 

  • R. Ringgaard, M. Herbst, T. Friborg, K. Schelde, A.G. Thomsen, H. Soegaard, Energy fluxes above three disparate surfaces in a temperate mesoscale coastal catchment. Vadose Zone J. 11, 54–66 (2011)

    Article  Google Scholar 

  • RPG Radiometer Physics GmbH, RPG-MWSC-160 microwave scintillometer manual, version 1.02. Meckenheim (2014)

    Google Scholar 

  • H.P. Schmid, Source areas for scalars and scalar fluxes. Bound.-Layer Meteorol. 67, 293–318 (1994)

    Article  Google Scholar 

  • H.P. Schmid, Experimental design for flux measurements: matching scales of observations and fluxes. Agric. For. Meteorol. 87, 179–200 (1997)

    Article  Google Scholar 

  • H.P. Schmid, Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agric. For. Meteorol. 113, 159–183 (2002)

    Article  Google Scholar 

  • P. Schotanus, F.T.M. Nieuwstadt, H.A.R. De Bruin, Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound.-Layer Meteorol. 26, 81–93 (1983)

    Article  Google Scholar 

  • P.J. Sellers, F.G. Hall, G. Asrar, D.E. Strebel, R.E. Murphy, The first ISLSCP field experiment (FIFE). Bull. Am. Meteorol. Soc. 69(1), 22–27 (1988)

    Article  Google Scholar 

  • P. Sellers, F. Hall, H. Margolis, B. Kelly, D. Baldocchi, G. Hartog, J. Cihlar, M.G. Ryan, B. Goodison, P. Crill, K.J. Ranson, D. Lettenmaier, D.E. Wickland, The boreal ecosystem–atmosphere study (BOREAS): an overview and early results from the 1994 field year. Bull. Am. Meteorol. Soc. 76, 1549–1577 (1995)

    Article  Google Scholar 

  • D.I. Stannard, A theoretically based determination of Bowen-ratio fetch requirements. Bound.-Layer Meteorol. 83, 375–406 (1997)

    Article  Google Scholar 

  • P.C. Stoy, M. Mauder, T. Foken, M. Barbara, E. Boegh, A. Ibrom, M.A. Arain, A. Arneth, M. Aurela, C. Bernhofer, A. Cescatti, E. Dellwik, P. Duce, D. Gianelle, E. Gorsel, G. Kiely, A. Knohl, H. Margolis, H. McCaughey, L. Merbold, L. Montagnani, D. Papale, M. Reichstein, M. Saunders, P. Serrano-Ortiz, M. Sottocornola, D. Spano, F. Vaccari, A. Varlagin, A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agric. For. Meteorol. 171–172, 137–152 (2013)

    Article  Google Scholar 

  • W.C. Swinbank, The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J. Meteorol. 8, 135–145 (1951)

    Article  Google Scholar 

  • G.I. Taylor, The spectrum of turbulence. Proc. R. Soc. 164(919), 476–490 (1938)

    Article  Google Scholar 

  • V. Thiermann, H. Grassl, The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Bound.-Layer Meteorol. 58, 367–389 (1992)

    Article  Google Scholar 

  • C.W. Thornthwaite, B. Holzman, The determination of evaporation from land and water surfaces. Mon. Weather Rev. 67(1), 4–11 (1939)

    Article  CAS  Google Scholar 

  • R.W. Todd, S.R. Evett, T.A. Howell, The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment. Agric. For. Meteorol. 103, 335–348 (2000)

    Article  Google Scholar 

  • T.E. Twine, W.P. Kustas, J.M. Norman, D.R. Cook, P.R. Houser, T.P. Meyers, J.H. Prueger, P.J. Starks, M.L. Wesely, Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 103, 279–300 (2000)

    Article  Google Scholar 

  • H.E. Unland, P.R. Houser, W.J. Shuttleworth, Z.L. Yang, Surface flux measurement and modelling at a semi-arid Sonoran Desert site. Agric. For. Meteorol. 82, 119–153 (1996)

    Article  Google Scholar 

  • S.B. Verma, N.J. Rosenberg, B.L. Blad, Turbulent exchange coefficients for sensible heat and water vapor under advective conditions. J. Appl. Meteorol. 17, 330–338 (1978)

    Article  Google Scholar 

  • T.I. Wang, G.R. Ochs, S.F. Clifford, A saturation–resistant optical scintillometer to measure Cn 2. J. Opt. Soc. Am. 69, 334–338 (1978)

    Article  Google Scholar 

  • J.M. Wang, J.X. Zhuang, W.Z. Wang, S.M. Liu, Z.W. Xu, Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE. IEEE Geosci. Remote Sens. Lett. 12(2), 259–263 (2015)

    Article  Google Scholar 

  • H.C. Ward, Scintillometry in urban and complex environments: a review. Meas. Sci. Technol. 28, 064005 (2017). https://doi.org/10.1088/1361-6501/aa5e85

    Article  CAS  Google Scholar 

  • E.K. Webb, G.I. Pearman, R. Leuning, Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. 106, 85–100 (1980)

    Article  Google Scholar 

  • L.A. Wever, L.B. Flanagan, P.J. Carlson, Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agric. For. Meteorol. 112, 31–49 (2002)

    Article  Google Scholar 

  • J.M. Wilczak, S.P. Oncley, S.A. Stage, Sonic anemometer tilt correction algorithms. Bound.-Layer Meteorol. 99, 127–150 (2001)

    Article  Google Scholar 

  • K.B. Wilson, D.D. Baldocchi, Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric. For. Meteorol. 100, 1–18 (2000)

    Article  Google Scholar 

  • K.B. Wilson, P.J. Hanson, P.J. Mulholland, D.D. Baldocchi, S.D. Wullschleger, A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 106, 153–168 (2001)

    Article  Google Scholar 

  • S.D. Wullschleger, F.C. Meinzer, R.A. Vertessy, A review of whole-plant water use studies in trees. Tree Physiol. 18, 499–512 (1998)

    Article  Google Scholar 

  • Z.W. Xu, S.M. Liu, X. Li, S.J. Shi, J.M. Wang, Z.L. Zhu, T.R. Xu, W.Z. Wang, M.G. Ma, Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. J. Geophys. Res. 118, 13140–13157 (2013)

    Google Scholar 

  • Z.W. Xu, Y.F. Ma, S.M. Liu, W.J. Shi, J.M. Wang, Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. J. Appl. Meteorol. Climatol. 56(1), 127–140 (2017)

    Google Scholar 

  • T.R. Xu, S.M. Liu, Z.W. Xu, S.L. Liang, L. Xu, A dual-pass data assimilation scheme for estimating surface energy fluxes with FY3-AVIRR land surface temperature. Sci. China Earth Sci. 58(2), 211–230 (2015)

    Article  Google Scholar 

  • K. Yang, J. Wang, A temperature prediction–correction method for estimating surface soil heat flux from soil temperature and moisture data. Science 51(5), 721–729 (2008)

    Google Scholar 

  • S. Zacharias, H. Bogena, L. Samaniego, M. Mauder, R. Fuβ, T. Pütz, M. Frenzel, M. Schwank, C. Baessler, K. Butterbach-Bahl, O. Bens, E. Borg, A. Brauer, P. Dietrich, I. Hajnsek, G. Helle, R. Kiese, H. Kunstmann, S. Klotz, J.C. Munch, H. Paper, E. Priesack, H.P. Schmid, R. Steinbrecher, U. Rosenbaum, G. Teutsch, H. Vereeken, A network of terrestrial environmental observatories in Germany. Vadose Zone J. 10, 955–973 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, S., Xu, Z. (2018). Micrometeorological Methods to Determine Evapotranspiration. In: Li, X., Vereecken, H. (eds) Observation and Measurement. Ecohydrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47871-4_7-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47871-4_7-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47871-4

  • Online ISBN: 978-3-662-47871-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Micrometeorological Methods to Determine Evapotranspiration
    Published:
    11 August 2018

    DOI: https://doi.org/10.1007/978-3-662-47871-4_7-3

  2. Micrometeorological Methods to Determine Evapotranspiration
    Published:
    04 December 2017

    DOI: https://doi.org/10.1007/978-3-662-47871-4_7-2

  3. Original

    Micrometeorological Methods to Determine Evapotranspiration
    Published:
    13 October 2017

    DOI: https://doi.org/10.1007/978-3-662-47871-4_7-1