Advertisement

Remote Sensing Precipitation: Sensors, Retrievals, Validations, and Applications

  • Yang Hong
  • Guoqiang Tang
  • Yingzhao Ma
  • Qi Huang
  • Zhongying Han
  • Ziyue Zeng
  • Yuan Yang
  • Cunguang Wang
  • Xiaolin Guo
Living reference work entry

Later version available View entry history

Part of the Ecohydrology book series (ECOH)

Abstract

Precipitation is one of the most important water cycle components. The chapter reviews modern instruments and techniques for global precipitation retrieval, including weather radars and satellites. Some of the most popular global multi-satellite precipitation products are introduced, including PERSIANN-CCS, TMPA, and IMERG. In addition, we extend to the typical regional and global studies about the assessment of various products and their application in flood detection and prediction.

Keywords

Remote sensing Precipitation Sensors Retrievals Validations Applications 

Notes

Acknowledgment

This study was financially supported by the National Natural Science Foundation of China (Grant No. 71461010701), National Key Research and Development Program of China (2016YFE0102400), and National Natural Science Foundation of China (Grant No. 91437214).

References

  1. R.F. Adler, A.J. Negri, A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteorol. 27, 30–51 (1988)CrossRefGoogle Scholar
  2. P.A. Arkin, The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array. Mon. Weather Rev. 107(10), 1382–1387 (1979)CrossRefGoogle Scholar
  3. P.A. Arkin, B.N. Meisner, The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982–84. Mon. Weather Rev. 115, 51–74 (1987)CrossRefGoogle Scholar
  4. H. Ashouri, K.L. Hsu, S. Sorooshian, et al., PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. J. Bull. Am. Meteorol. Soc. 96(1), 69–83 (2015)CrossRefGoogle Scholar
  5. D. Atlas, Radar calibration: Some simple approaches. Bull. Am. Meteorol. Soc. 83(9), 1313 (2002)CrossRefGoogle Scholar
  6. D. Atlas, D. Rosenfeld, D.B. Wolff, Climatologically tuned reflectivity-rain rate relations and links to area-time integrals. J. Appl. Meteorol. 29, 1120–1135 (1990)CrossRefGoogle Scholar
  7. M. Ba, A. Gruber, GOES multispectral rainfall algorithm (GMSRA). J. Appl. Meteorol. 40, 1500–1514 (2001)CrossRefGoogle Scholar
  8. W.G.M. Bastiaanssen, H. Pelgrum, J. Wang, et al., A remote sensing surface energy balance algorithm for land (SEBAL): Part 2: Validation. J. Hydrol. 212, 213–229 (1998)CrossRefGoogle Scholar
  9. H.E. Beck et al., Global-scale evaluation of 23 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. Discuss., 1–23 (2017)Google Scholar
  10. A. Behrangi et al., What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resour. Res. 50(6), 4893–4905 (2014)CrossRefGoogle Scholar
  11. A. Berne, G. Delrieu, J.D. Creutin, C. Obled, et al., Temporal and spatial resolution of rainfall measurements required for urban hydrology. J. Hydrol. 299(3–4), 166–179 (2004)CrossRefGoogle Scholar
  12. L. Brown, A radar history of World War II. J. Am. Hist. Res. (1999)Google Scholar
  13. R. Buderi, The Invention that Changed the World: How a Small Group of Radar Pioneers Won the Second World War and Launched a Technological Revolution (Simon and Schuster, New York, 1996)Google Scholar
  14. R.S. Davis, Flash flood forecast and detection methods, in Severe Convective Storms, (American Meteorological Society, Boston, 2001), pp. 481–525CrossRefGoogle Scholar
  15. G. Delrieu, J. Nicol, E. Yates, et al., The catastrophic flash-flood event of 8–9 September 2002 in the Gard region, France: A first case study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory. J. Hydrometeorol. 6(1), 34–52 (2005)CrossRefGoogle Scholar
  16. C.A. Doswell, H.E. Brooks, R.A. Maddox, Flash flood forecasting: An ingredients-based methodology. J. Weather Forecast. 11(4), 560–581 (1996)CrossRefGoogle Scholar
  17. R.J. Doviak, Doppler Radar and Weather Observations (Courier Corporation, Chelmsford, 1993)Google Scholar
  18. L.H.Z.P.N. Fang, H.S.Z.X.G. Runsheng, X. Bao, China operational weather radar data processing system. J. Appl. Meteorlol. 6, 014 (2002)Google Scholar
  19. F. Farbry, A. Bellon, M.R. Duncan, G.L. Austin, et al., High resolution rainfall measurements by radar for very small basins: The sampling problem reexamined. J. Hydrol. 161(1–4), 415–428 (1994)CrossRefGoogle Scholar
  20. R. Ferraro, G. Marks, The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Ocean Technol. 12(4), 755–770 (1995)CrossRefGoogle Scholar
  21. R.L. Geiger, Research and Relevant Knowledge: American Research Universities Since World War II (Transaction Publishers, New Brunswick, 2008)Google Scholar
  22. K.P. Georgakakos, Real-time flash flood prediction. J. Geophys. Res. Atmos. 92(D8), 9615–9629 (1987)CrossRefGoogle Scholar
  23. C.G. Griffith, W.L. Woodley, P.G. Grube, D.W. Martin, J. Stout, D.N. Sikdar, Rain estimation from geosynchronous satellite imagery-visible and infrared studies. Mon.Weather Rev. 106, 1153–1171 (1978)CrossRefGoogle Scholar
  24. D. Harris, E. Foufoula-Georgiou, K. Droegemeier, et al., Multiscale statistical properties of a high-resolution precipitation forecast. J. Hydrometeorol. 2(4), 406–418 (2001)CrossRefGoogle Scholar
  25. W.H. Heiss, D.L. McGrew, D. Sirmans, et al., NEXRAD: Next generation weather radar (WSR-88D). J. Microwave 33(1), 79–89 (1990)Google Scholar
  26. Y. Hong, K.L. Hsu, S. Sorooshian, et al., Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 43, 1834–1853 (2004)CrossRefGoogle Scholar
  27. Y. Hong, K. Hsu, S. Sorooshian, et al., Self-organizing nonlinear output (SONO): A neural network suitable for cloud patch–based rainfall estimation at small scales. Water Resour. Res. 41, 477–490 (2005)Google Scholar
  28. Y. Hong, D. Gochis, J. Cheng, et al., Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. J. Hydrometeorol. 8, 469–482 (2007)CrossRefGoogle Scholar
  29. Y. Hong, S. Chen, X. Xue, G. Hodges, Global precipitation estimation and applications, in Multiscale Hydrologic Remote Sensing: Perspectives and Applications, (CRC Press, Boca Raton, 2012), pp. 371–386CrossRefGoogle Scholar
  30. Y. Hong, Y. Zhang, S. Khan, Hydrologic Remote Sensing: Capacity Building for Sustainability and Resilience CRC Press, (2016)Google Scholar
  31. A.Y. Hou, R.K. Kakar, S. Neeck, A.A. Azarbarzin, C.D. Kummerow, M. Kojima, … T. Iguchi, The global precipitation measurement mission. J. Am. Meteorol. Soc. 95(5), 701–722 (2014)CrossRefGoogle Scholar
  32. K. Hsu, X. Gao, S. Sorooshian, H.V. Gupta, Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 36, 1176–1190 (1997)CrossRefGoogle Scholar
  33. G.J. Huffman, D.T. Bolvin, E.J. Nelkin, D.B. Wolff, R.F. Adler, G. Gu, … E.F. Stocker, The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007)CrossRefGoogle Scholar
  34. G.J. Huffman, R.F. Adler, D.T. Bolvin, E.J. Nelkin, The TRMM multi-satellite precipitation analysis (TMPA), in Satellite Rainfall Applications for Surface Hydrology, (Springer Netherlands, Dordrecht, 2010), pp. 3–22CrossRefGoogle Scholar
  35. G.J. Huffman, D.T. Bolvin, E.J. Nelkin, Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation. NASA/GSFC Code 612, 47 pp. http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf (2015)
  36. R.J. Joyce, J.E. Janowiak, P.A. Arkin, P. Xie, CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 5(3), 487–503 (2004)CrossRefGoogle Scholar
  37. G. Kan, G. Tang, Y. Yang, Y. Hong, J. Li, L. Ding, et al., An improved coupled routing and excess storage (CREST) distributed hydrological model and its verification in Ganjiang River basin, China. Water 9(11), 904 (2017)CrossRefGoogle Scholar
  38. I.S. Khan et al., Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins. IEEE Trans. Geosci. Remote Sens. 49, 85–95 (2011)CrossRefGoogle Scholar
  39. C. Kidd, G. Huffman, Global precipitation measurement. Meteorol. Appl. 18, 334–353 (2011)CrossRefGoogle Scholar
  40. D.B. Kirschbaum, G.J. Huffman, R.F. Adler, S. Braun, K. Garrett, E. Jones, et al., NASA’s remotely sensed precipitation: A reservoir for applications users. Bull. Am. Meteorol. Soc. 98(6), 1169–1184 (2017)CrossRefGoogle Scholar
  41. G.E. Klazura, D.A. Imy, A description of the initial set of analysis products available from the NEXRAD WSR-88D system. J. Am. Meteorol. Soc. 74(7), 1293–1311 (1993)CrossRefGoogle Scholar
  42. W.F. Krajewski, J.A. Smith, Radar hydrology: Rainfall estimation. J. Adv. Water Resour. 25(8–12), 1387–1394 (2002)CrossRefGoogle Scholar
  43. T. Kubota, S. Shige, H. Hashizume, K. Aonashi, N. Takahashi, S. Seto, … K. Iwanami. Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE T. Geosci. Remote. 45(7), 2259–2275 (2007)CrossRefGoogle Scholar
  44. C. Kummerow, W. Barnes, T. Kozu, et al., The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 15(3), 809–817 (1998)CrossRefGoogle Scholar
  45. C. Kummerow, Y. Hong, W. Olson, et al., The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteorol. 40(11), 1801–1820 (2001)CrossRefGoogle Scholar
  46. L. Li, Y. Hong, J. Wang, et al., Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa. J. Nat. Hazards 50(1), 109–123 (2009)CrossRefGoogle Scholar
  47. N. Li, G. Tang, P. Zhao, Y. Hong, Y. Gou, K. Yang, Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin. Atmos. Res. 183, 212–223 (2017)CrossRefGoogle Scholar
  48. L. Liang, C. Liu, Y.Q. Xu, et al., Real-time texture synthesis by patch-based sampling. J. ACM Trans. Graphics (ToG) 20(3), 127–150 (2001)CrossRefGoogle Scholar
  49. Y. Ma, G. Tang, D. Long, B. Yong, L. Zhong, W. Wan, Y. Hong, Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan plateau. Remote Sens. 8(7), 569 (2016)CrossRefGoogle Scholar
  50. J.S. Marshall, W.M.K. Palmer, The distribution of raindrops with size. J. Meteor. 5(4), 165–166 (1948)CrossRefGoogle Scholar
  51. C. Massari et al., An assessment of the performance of global rainfall estimates without ground-based observations. Hydrol. Earth Syst. Sci. 21(9), 4347–4361 (2017)CrossRefGoogle Scholar
  52. J. Morin, D. Rosenfeld, E. Amitai, et al., Radar rain field evaluation and possible use of its high temporal and spatial resolution for hydrological purposes. J. Hydrol. 172(1–4), 275–292 (1995)CrossRefGoogle Scholar
  53. E. Peral, S. Tanelli, Z. Haddad, et al., Raincube: A proposed constellation of precipitation profiling radars in CubeSat, in C. Geoscience and Remote Sensing Symposium (IGARSS), 2015 I.E. International, (IEEE, 2015), Milan, Italy, pp. 1261–1264Google Scholar
  54. R.E. Rinehart, Radar for Meteorologists (University of North Dakota, Office of the President, 1991). Grand Forks, North DakotaGoogle Scholar
  55. R.A. Scofield, R.J. Kuligowski, Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Mon. Weather Rev. 18, 1037–1051 (2003)Google Scholar
  56. Y. Shen, A. Xiong, Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol. 36(1), 252–265 (2016)CrossRefGoogle Scholar
  57. X. Shen, Y. Hong, K. Zhang, Z. Hao, Refining a distributed linear reservoir routing method to improve performance of the CREST model. J. Hydrol. Eng. 22, 04016061 (2016)CrossRefGoogle Scholar
  58. A.I. Shiklomanov, R.B. Lammers, C.J. Vörösmarty, Widespread decline in hydrological monitoring threatens pan-arctic research. Eos, Trans. Am. Geophys. 83(2), 13–17 (2002)CrossRefGoogle Scholar
  59. J. Simpson, R.F. Adler, G.R. North, A proposed tropical rainfall measuring mission (TRMM) satellite. J. Am. Meteorol. Soc. 69(3), 278–295 (1988)CrossRefGoogle Scholar
  60. J.A. Smith, M.L. Baeck, K.L. Meierdiercks, et al., Radar rainfall estimation for flash flood forecasting in small urban watersheds. J. Adv. Water Resour. 30(10), 2087–2097 (2007)CrossRefGoogle Scholar
  61. T.M. Smith, V. Lakshmanan, G.J. Stumpf, et al., Multi-radar multi-sensor (MRMS) severe weather and aviation products: Initial operating capabilities. J. Am. Meteorol. Soc. 97(9), 1617–1630 (2016)CrossRefGoogle Scholar
  62. S. Sorooshian, K.L. Hsu, X. Gao, H.V. Gupta, B. Imam, D. Braithwaite, Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteor. Soc. 81(9), 2035–2046 (2000)CrossRefGoogle Scholar
  63. E. Stokstad, Scarcity of rain, stream gages threatens forecasts. Science 285(5431), 1199–1200 (1999)CrossRefGoogle Scholar
  64. G. Tang, Y. Ma, D. Long, L. Zhong, Y. Hong, Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over mainland China at multiple spatiotemporal scales. J. Hydrol. 533, 152–167 (2016a)CrossRefGoogle Scholar
  65. G. Tang, D. Long, Y. Hong, Systematic anomalies over inland water bodies of High Mountain Asia in TRMM precipitation estimates: No longer a problem for the GPM era? IEEE Geosci. Remote Sens. 13, 1762 (2016b)CrossRefGoogle Scholar
  66. G. Tang, Z. Zeng, D. Long, X. Guo, B. Yong, W. Zhang, Y. Hong, Statistical and hydrological comparisons between TRMM and GPM Level-3 products over a Midlatitude Basin: Is Day-1 IMERG a good successor for TMPA 3B42V7? J. Hydrometeorol. 17(1), 121–137 (2016c)CrossRefGoogle Scholar
  67. G. Tang et al., Similarities and differences between three coexisting spaceborne radars in global rainfall and snowfall estimation. Water Resour. Res. 53(5), 3835–3853 (2017)CrossRefGoogle Scholar
  68. J. Vivekanandan, S.M. Ellis, R. Oye, et al., Cloud microphysics retrieval using S-band dual-polarization radar measurements. J. Am. Meteorol. Soc. 80(3), 381–388 (1990)CrossRefGoogle Scholar
  69. N. Wanders, M. Pan, E.F. Wood, Correction of real-time satellite precipitation with multi-sensor satellite observations of land surface variables. J. Remote Sens. Environ. 160, 206–221 (2015)CrossRefGoogle Scholar
  70. X. Wang, Incorporating ensemble covariance in the gridpoint statistical interpolation variational minimization: A mathematical framework. Mon. Weather Rev. 138(7), 2990–2995 (2010)CrossRefGoogle Scholar
  71. J. Wang, Y. Hong, L. Li, et al., The coupled routing and excess storage (CREST) distributed hydrological model. Hydrol. Sci. J. 56(1), 84–98 (2011)CrossRefGoogle Scholar
  72. X. Wang, D. Parrish, D. Kleist, et al., GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP global forecast system: Single-resolution experiment. Mon. Weather Rev. 141(11), 4098–4117 (2013)CrossRefGoogle Scholar
  73. F. Weng, L. Zhao, R. Ferraro, et al., Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci. 38(4), 8068 (2003)CrossRefGoogle Scholar
  74. T. Wilheit, A. Chang, L. Chiu, Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions. J. Atmos. Ocean Technol. 8(1), 118–136 (1991)CrossRefGoogle Scholar
  75. H. Wu, R.F. Adler, Y. Tian, G.J. Huffman, et al., Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res. 50(3), 2693–2717 (2014)CrossRefGoogle Scholar
  76. L. Xu, X. Gao, S. Sorooshian, P.A. Arkin, A microwave infrared threshold technique to improve the GOES precipitation index. J. Appl. Meteorol. 38, 569–579 (1999)CrossRefGoogle Scholar
  77. B. Yong, L. Ren, Y. Hong, et al., First evaluation of the climatological calibration algorithm in the real-time TMPA precipitation estimates over two basins at high and low latitudes. J. Water Resour. Res. 49(5), 2461–2472 (2013)CrossRefGoogle Scholar
  78. B. Yong, B. Chen, J.J. Gourley, et al., Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? J. Hydrol. 508, 77–87 (2014)CrossRefGoogle Scholar
  79. Z. Zeng, G. Tang, D. Long, et al., A cascading flash flood guidance system: development and application in Yunnan Province, China. Natural Hazards, 84(3), 2071–2093CrossRefGoogle Scholar
  80. Y. Zhang, Y. Hong, X. Wang, et al., Hydrometeorological analysis and remote sensing of extremes: Was the July 2012 Beijing flood event detectable and predictable by global satellite observing and global weather modeling systems? J. Hydrol. 16(1), 381–395 (2015)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yang Hong
    • 1
    • 2
  • Guoqiang Tang
    • 1
  • Yingzhao Ma
    • 1
  • Qi Huang
    • 1
  • Zhongying Han
    • 1
  • Ziyue Zeng
    • 1
  • Yuan Yang
    • 1
  • Cunguang Wang
    • 1
  • Xiaolin Guo
    • 1
  1. 1.State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic EngineeringTsinghua UniversityBeijingChina
  2. 2.School of Civil Engineering and Environmental ScienceUniversity of OklahomaNormanUSA

Personalised recommendations