Skip to main content

The Stratum Corneum and Aging

  • Reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

It is clear that the stratum corneum (SC) maintains its primary protective role throughout life as nobody dies of old skin! However, many skin problems assert themselves in the aged due to changes in the structural and functional biochemistry of dermal and epidermal components. As an example, we now know that dry itchy senile xerotic skin is a problem of faulty epidermal and SC maturation together with reduced desquamation. Decreases in SC lipid levels with aging, especially SC ceramide levels, will affect the lateral and lamellar packing mesophases. In this respect, decreased CER EOS linoleate levels also occur which may affect the presence of the key SC long periodicity phase in aged SC. Decreased SC natural moisturizing factor (NMF) levels occur which are likely to affect SC water holding capacity although some report increases in NMF levels, which may be related to increased corneocyte size and SC thickness. Corneocytes get bigger and flatter and on non-facial body sites, the SC gets thicker all of which should improve transepidermal water loss (TEWL) if it is not compromised by the SC lipid changes. Decreased SC kallikrein 5 activities also occur with aging on non-facial body sites, which probably contributes to the expression of senile xerosis and reduced desquamation. The increased skin surface pH and protease activity lead to reduced SC cohesion with age, but appear not to be affecting superficial desquamation positively. The increased activities of desquamatory enzymes as well as inflammatory proteases probably contributes to the maintenance of a relatively thin facial SC with elevated TEWL and reduced barrier reserve throughout all ages compared with other body sites. Overall, aged SC functions less well compared with young SC. Measuring TEWL may not reflect these changes but the greater appearance of skin xerosis in the aged indicates that SC biochemistry and that the associated cellular phenotypic response is different. These cellular and biochemical differences are clearly observable when analysing SC tape stripping’s

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kligman AM. Perspectives and problems in cutaneous gerontology. J Invest Dermatol. 1979;73:39–46.

    Article  CAS  PubMed  Google Scholar 

  2. Plewig G, Marples RR. Regional differences of cell sizes in the human stratum corneum. I. J Invest Dermatol. 1970;54(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  3. Grove GL. Exfoliative cytological procedures as a nonintrusive method for dermatogerontological studies. J Invest Dermatol. 1979;73(1):67–9.

    Article  CAS  PubMed  Google Scholar 

  4. Marks R, Dawber RP. Skin surface biopsy: an improved technique for the examination of the horny layer. Br J Dermatol. 1971;84(2):117–23.

    Article  CAS  PubMed  Google Scholar 

  5. Imokawa G, Abe A, Jin Y, et al. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol. 1991;96(4):523–6.

    Article  CAS  PubMed  Google Scholar 

  6. Denda M, Hori J, Koyama J. Stratum corneum sphingolipids and free amino acids in experimentally induced scaly skin. Arch Dermatol Res. 1992;284(6):363–7.

    Article  CAS  PubMed  Google Scholar 

  7. Hara M, Kikuchi K, Watanabe M, et al. Senile xerosis: functional, morphological and biochemical studies. J Geriatr Dermatol. 1993;1:111–20.

    Google Scholar 

  8. Fulmer AW, Kramer GJ. Stratum corneum lipid abnormalities in surfactant induced dry scaly skin. J Invest Dermatol. 1986;86(5):598–602.

    Article  CAS  PubMed  Google Scholar 

  9. Rogers J, Harding CR, Mayo A, et al. Stratum corneum lipids: the effect of ageing and the seasons. Arch Dermatol Res. 1996;288:765–70.

    Article  CAS  PubMed  Google Scholar 

  10. Ghadially R, Brown BE, Sequeira-Martin SM, et al. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest. 1995;95(5):2281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rawlings AV, Watkinson A, Rogers J, et al. Abnormalities in stratum corneum structure lipid composition and desmosome degradation in soap-induced winter xerosis. J Soc Cosmet Chem. 1994;45:203–20.

    CAS  Google Scholar 

  12. Bouwstra JA, Gooris GS, van der Spek JA, et al. Structural investigations of human stratum corneum by small-angle X-ray scattering. J Invest Dermatol. 1991;97(6):1005–12.

    Article  CAS  PubMed  Google Scholar 

  13. Horii I, Nakayama Y, Obata M, et al. Stratum corneum hydration and amino acid content in xerotic skin. Br J Dermatol. 1989;121(5):587–92.

    Article  CAS  PubMed  Google Scholar 

  14. Jacobson TM, Yüksel JC, Geesin JC, et al. Effects of aging and xerosis on the amino acid composition of human skin. J Invest Dermatol. 1990;95(3):296–300.

    Article  CAS  PubMed  Google Scholar 

  15. Koyama J, Nakanishi J, Masuda Y, et al. The mechanism of desquamation in the stratum corneum and its relevance to skin care. Proceedings of the 19th IFSCC Congress, Sydney, 1996.

    Google Scholar 

  16. Harding CR, Watkinson A, Rawlings AV. Dry skin, moisturization and corneodesmolysis. Int J Cosmet Sci. 2000;22:21–52.

    Article  CAS  PubMed  Google Scholar 

  17. Long S, Banks J, Watkinson A, et al. Desmocollins: a key marker for desmosome processing in stratum corneum. J Invest Dermatol. 1996;106:872.

    Google Scholar 

  18. Simon M, Bernard D, Minondo AM, et al. Persistence of both peripheral and non-peripheral corneodesmosomes in the upper stratum corneum of winter xerosis skin versus only peripheral in normal skin. J Invest Dermatol. 2001;116:23–30.

    Article  CAS  PubMed  Google Scholar 

  19. Michel S, Schmidt R, Shroot B, et al. Morphological and biochemical characterization of the cornified envelopes from human epidermal keratinocytes of different origin. J Invest Dermatol. 1988;91(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  20. Hirao T, Denda M, Takahashi M. Identification of immature cornfield envelopes in the barrier-impaired epidermis by characterization of their hydrophobicity and antigenicities of the components. Exp Dermatol. 2001;10:35–44.

    Article  CAS  PubMed  Google Scholar 

  21. Marks R, Black D, Hamami I, et al. A simplified method for measurement of desquamation using dansyl chloride fluorescence. Br J Dermatol. 1984;111(3):265–70.

    Article  CAS  PubMed  Google Scholar 

  22. Kligman AM. The biology of the stratum corneum. In: Montagna W, Lobitz WC, editors. The epidermis. New York: Academic; 1964. p. 387–433.

    Chapter  Google Scholar 

  23. Blank IH. Factors which influence the water content of the stratum corneum. J Invest Dermatol. 1952;18:433–40.

    Article  CAS  PubMed  Google Scholar 

  24. Warner RR, Lilly NA. Correlation of water content with ultrastructure in the stratum corneum. In: Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin: water and the stratum corneum. Boca Raton: CRC Press; 1994. p. 3–12.

    Google Scholar 

  25. Rawlings AV, Watkinson A, Hope J, et al. The effect of glycerol and humidity on desmosome degradation in stratum corneum. Arch Dermatol Res. 1995;287:457–64.

    Article  CAS  PubMed  Google Scholar 

  26. Bowser PA, White RJ. Isolation, barrier properties and lipid analysis of stratum compactum, a discrete region of the stratum corneum. Br J Dermatol. 1985;112(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  27. Pfeiffer S, Vielhaber G, Vietzke JP, et al. High-pressure freezing provides new information on human epidermis: simultaneous protein antigen and lamellar lipid structure preservation. Study on human epidermis by cryoimmobilization. J Invest Dermatol. 2000;114(5):1030–8.

    Article  CAS  PubMed  Google Scholar 

  28. Norlen L. Skin barrier structure and function: the single gel phase model. J Invest Dermatol. 2001;117:830–6.

    Article  CAS  PubMed  Google Scholar 

  29. Bouwstra JA, de Graaff A, Gooris GS, et al. Water distribution and related morphology in human stratum corneum at different hydration levels. J Invest Dermatol. 2003;120(5):750–8.

    Article  CAS  PubMed  Google Scholar 

  30. Richter T, Peuckert C, Sattler M, et al. Dead but highly dynamic – the stratum corneum is divided into three hydration zones. Skin Pharmacol Physiol. 2004;17(5):246–57.

    Article  CAS  PubMed  Google Scholar 

  31. Downing DT, Stewart ME. Epidermal composition. In: Loden M, Maibach HI, editors. Dry skin and moisturizers chemistry and function. Boca Raton: CRC Press; 2000. p. 13–26.

    Google Scholar 

  32. Motta SM, Monti M, Sesana S, et al. Ceramide composition of psoriatic scale. Biochim Biophys Acta. 1993;1182:147–51.

    Article  CAS  PubMed  Google Scholar 

  33. Oku H, Mimura K, Tokitsu Y, et al. Biased distribution of the branched-chain fatty acids in ceramides of vernix caseosa. Lipids. 2000;35(4):373–81.

    Article  CAS  PubMed  Google Scholar 

  34. Chopart M, Castiel-Higounenc I, Arbey E, et al. A new type of covalently bound ceramide in human epithelium. Basel: Stratum Corneum III; 2001.

    Google Scholar 

  35. Hill J, Paslin D, Wertz PW. A new covalently bound ceramide from human stratum corneum-ω-hydroxyacylphytosphingosine. Int J Cosmet Sci. 2006;28(3):225–30.

    Article  CAS  PubMed  Google Scholar 

  36. Hamanaka S, Hara M, Nishio H, et al. Human epidermal glucosylceramides are major precursors of stratum corneum ceramides. J Invest Dermatol. 2002;119:416–23.

    Article  CAS  PubMed  Google Scholar 

  37. Wertz PW, Miethke MC, Long SA, et al. The composition of the ceramides from human stratum corneum and from comedones. J Invest Dermatol. 1985;84(5):410–2.

    Article  CAS  PubMed  Google Scholar 

  38. Farwanah H, Pierstorff B, Schmelzer CEH, et al. Separation and mass spectrometric characterization of covalently bound ceramides using LC/APCI-MS and Nano-ESI-MS/MS. J Chromatogr. 2007;852:562–70.

    CAS  Google Scholar 

  39. Rawlings AV, Hinder H, Puch P, et al. Composition of human stratum corneum ceramide EOS omega-hydroxy fatty acids. IFSCC Congress, 2008.

    Google Scholar 

  40. Pilgram GSK, Engelsma-van Pelt AM, Bouwstra JA, et al. Electron diffraction provides new information on human stratum corneum lipid organisation studied in relation to depth and temperature. J Invest Dermatol. 1999;113:403–9.

    Article  CAS  PubMed  Google Scholar 

  41. Brancaleon L, Bamberg MP, Sakamaki T, et al. Attenuated total reflection-Fourier transform infrared spectroscopy as a possible method to investigate biophysical parameters of stratum corneum in vivo. J Invest Dermatol. 2001;116:380–6.

    Article  CAS  PubMed  Google Scholar 

  42. Bouwstra J, Pilgram G, Gooris G, et al. New aspects of the skin barrier organization. Skin Pharm Appl Skin Physiol. 2001;14:52–62.

    Article  CAS  Google Scholar 

  43. Bouwstra J, Gooris GS, Dubbelaar FER, et al. Phase behaviour of stratum corneum lipid mixtures based on human ceramides: the role of natural and synthetic ceramide 1. J Invest Dermatol. 2002;118:606–17.

    Article  CAS  PubMed  Google Scholar 

  44. Conti A, Rogers J, Verdejo P, et al. Seasonal changes in stratum corneum ceramide one fatty acid levels and the influence of topical fatty acids. Int J Cosmet Sci. 1996;18:1–12.

    Article  CAS  PubMed  Google Scholar 

  45. Rawlings AV, Critchley P, Ackerman C, et al. The functional role of ceramide one in the stratum corneum. 17th IFSCC, Yokohama, Japan, 1992.

    Google Scholar 

  46. Oldroyd J, Critchley P, Tiddy GJT, et al. A specialized role for ceramide one in the stratum corneum water barrier. J Invest Dermatol. 1994;102:525.

    Google Scholar 

  47. de Jager M, Groenink W, van der Spek J, et al. Preparation and characterization of a stratum corneum substitute for in vitro percutaneous penetration studies. Biochim Biophys Acta. 2006;1758(5):636–44.

    Article  PubMed  CAS  Google Scholar 

  48. Meldrum H, et al. The characteristic decrease in scalp stratum corneum lipids in dandruff is reversed by use of a ZnPTO containing shampoo. IFSCC Mag. 2003;6(1):3–6.

    Google Scholar 

  49. Denda M, Sato J, Masuda Y, et al. Exposure to a dry environment enhances epidermal permeability barrier function. J Invest Dermatol. 1998;111:858–63.

    Article  CAS  PubMed  Google Scholar 

  50. Sato J, Denda M, Chang S, et al. Abrupt decreases in environmental humidity induce abnormalities in permeability barrier homeostasis. J Invest Dermatol. 2002;119:900–4.

    Article  CAS  PubMed  Google Scholar 

  51. Chou TC, Lin KH, Wang SM, et al. Transepidermal water loss and skin capacitance alterations among workers in an ultra-low humidity environment. Arch Dermatol Res. 2005;296:489–95.

    Article  PubMed  Google Scholar 

  52. Warner RR, Boissy YL. Effect of moisturizing products on the structure of lipids in the outer stratum corneum of humans. In: Loden M, Maibach HI, editors. Dry skin and moisturisers. Boca Raton: CRC Press; 2000. p. 349–72.

    Google Scholar 

  53. Berry N, Charmeil C, Gouion C, et al. A clinical, biometrological and ultrastructural study of xerotic skin. Int J Cosmet Sci. 1999;21:241–9.

    Article  CAS  PubMed  Google Scholar 

  54. Sheu HM, Chao SC, Wong TW, et al. Human skin surface lipid film: an ultrastructural study and interaction with corneocytes and intercellular lipid lamellae of the stratum corneum. Br J Dermatol. 1999;140(3):385–91.

    Article  CAS  PubMed  Google Scholar 

  55. Wertz PW, Downing DT. Hydroxyacid derivatives in human epidermis. Lipids. 1988;23(5):415–8.

    Article  CAS  PubMed  Google Scholar 

  56. Long SA, Wertz PW, Strauss JS, et al. Human stratum corneum polar lipids and desquamation. Arch Dermatol Res. 1985;277(4):284–7.

    Article  CAS  PubMed  Google Scholar 

  57. Chen YL, Wiedmann TS. Human stratum corneum lipids have a distorted orthorhombic packing at the surface of cohesive failure. J Invest Dermatol. 1996;107(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  58. King CS, Barton SP, et al. The change in properties of the stratum corneum as a function of depth. Br J Dermatol. 1979;100(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  59. Marks R, Lawson A, Nicholls S. Age-related changes in stratum corneum structure and function. In: Marks R, editor. The stratum corneum. Cardiff: Stratum Corneum Group; 1986. p. 10–5.

    Google Scholar 

  60. Choi EH, Man MQ, Xu P, et al. Stratum corneum acidification is impaired in moderately aged human and murine skin. J Invest Dermatol. 2007;127:2847–56.

    Article  CAS  PubMed  Google Scholar 

  61. Serre G, Mils V, Haftek M, et al. Identification of late differentiation antigens of human cornified epithelia, expressed in re-organized desmosomes and bound to cross-linked envelope. J Invest Dermatol. 1991;97:1061–72.

    Article  CAS  PubMed  Google Scholar 

  62. Simon M, Jonca N, Guerrin M, et al. Refined characterization of corneodesmosin proteolysis during terminal differentiation of human epidermis and its relationship to desquamation. J Biol Chem. 2001;276:20292–9.

    Article  CAS  PubMed  Google Scholar 

  63. Caubet C, et al. Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family. J Invest Dermatol. 2004;122:1235–44.

    Article  CAS  PubMed  Google Scholar 

  64. Duhieu S, Laperdrix C, Hashimoto T, et al. Desmosome-binding antibody KM48 recognises an extracellular antigen different from desmosomal cadherins Dsg 1-3 and Dsc 1-3. Eur J Dermatol. 2006;15(2):80–4.

    Google Scholar 

  65. Lundstörm A, Egelud T. Cell shedding from human plantar skin in vitro: evidence that two different types of protein structures are degraded by a chymotrypsin-like enzyme. Arch Dermatol Res. 1990;282:234–7.

    Article  Google Scholar 

  66. Suzuki Y, Nomura J, Koyama J, et al. The role of proteases in stratum corneum: involvement in stratum corneum desquamation. Arch Dermatol Res. 1994;286:249–53.

    Article  CAS  PubMed  Google Scholar 

  67. Horikoshi T, Igarashi S, Uchiwa H, et al. Role of endogenous cathepsin D-like and chymotrypsin-like proteolysis in human epidermal desquamation. Br J Dermatol. 1999;141:453–9.

    Article  CAS  PubMed  Google Scholar 

  68. Horikoshi T, Arany I, Rajaraman S, et al. Isoforms of cathepsin D human epidermal differentiation. Biochimie. 1998;80:605–12.

    Article  CAS  PubMed  Google Scholar 

  69. Watkinson A. Stratum corneum thiol protease (SCTP): a novel cysteine protease of late epidermal differentiation. Arch Dermatol Res. 1999;291:260–8.

    Article  CAS  PubMed  Google Scholar 

  70. Bernard D, et al. Analysis of proteins with caseinolytic activity in a human SC extract revealed a yet unidentified cysteine protease and identified the so called “SC thiol protease” as Cathepsin L2. J Invest Dermatol. 2003;120:592–600.

    Article  CAS  PubMed  Google Scholar 

  71. Komatsu N, Saijoh K, Sidiropoulos M, et al. Quantification of human tissue kallikreins in the stratum corneum: dependence on age and gender. J Invest Dermatol. 2005;125:1182–9.

    Article  CAS  PubMed  Google Scholar 

  72. Borgoño CA, Michael IP, Komatsu N, et al. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem. 2007;282(6):640–52.

    Google Scholar 

  73. Kishibe M, Bando Y, Terayama R, et al. Kallikrein 8 is involved in skin desquamation in cooperation with other kallikreins. J Biol Chem. 2007;282(8):5834–41.

    Article  CAS  PubMed  Google Scholar 

  74. Suzuki Y, Nomura J, Hori J, et al. Detection and characterization of endogenous protease associated with desquamation of stratum corneum. Arch Dermatol Res. 1994;285:372–7.

    Article  Google Scholar 

  75. Voegeli R, Rawlings AV, Doppler S, et al. Profiling of serine protease activities in human stratum corneum and detection of a stratum corneum tryptase-like enzyme. Int J Cosmet Sci. 2007;29:191–200.

    Article  CAS  PubMed  Google Scholar 

  76. Bernard D, Mehul B, Delattre C, et al. Purification and characterization of the endoglycosidase heparanase 1 from human plantar stratum corneum: a key enzyme in epidermal physiology. J Invest Dermatol. 2001;117:1266–73.

    Article  CAS  PubMed  Google Scholar 

  77. Sondell B, Thornell LE, Stigbrand T, et al. Immunolocalization of SCCE in human skin. Histo Cyto. 1994;42:459–65.

    Article  CAS  Google Scholar 

  78. Watkinson A, Smith C, Coan P, et al. The role of Pro-SCCE and SCCE in desquamation. 21st IFSCC Congress, Berlin; 2000. p. 16–25.

    Google Scholar 

  79. Igarashi S, Takizawa T, Yasuda Y, et al. Cathepsin D, and not cathepsin E, degrades desmosomes during epidermal desquamation. Br J Dermatol. 2004;151:355–61.

    Article  CAS  PubMed  Google Scholar 

  80. Ishida-Yamamoto I, et al. Epidermal lamellar granules transport different cargoes as distinct aggregates. J Invest Dermatol. 2004;122:1145–53.

    Article  Google Scholar 

  81. Watkinson A, Harding C, Moore A, et al. Water modulation of stratum corneum chymotryptic enzyme activity and desquamation. Arch Dermatol Res. 2001;293:470–6.

    Article  CAS  PubMed  Google Scholar 

  82. Komatsu N, Takata M, Otsuki N, et al. Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J Invest Dermatol. 2002;118:436–43.

    Article  CAS  PubMed  Google Scholar 

  83. Deraison C, Bonnart C, Lopez F, et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell. 2007;18(9):3607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamasaki K, Di Nardo A, Bardan A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13(8):975–80.

    Article  CAS  PubMed  Google Scholar 

  85. Declercq L, Muizzuddin N, Hellemans L, et al. Adaptation response in human skin barrier to a hot and dry environment. J Invest Dermatol. 2002;119:716.

    Google Scholar 

  86. Bernard D, Méhul B, Thomas-Collignon A, et al. Identification and characterization of a novel retroviral-like aspartic protease specifically expressed in human epidermis. J Invest Dermatol. 2005;125(2):278–87.

    CAS  PubMed  Google Scholar 

  87. Fischer H, Stichenwirth M, Dockal M, et al. Stratum corneum-derived caspase-14 is catalytically active. FEBS Lett. 2004;577(3):446–50.

    Article  CAS  PubMed  Google Scholar 

  88. Watkinson A, Smith C, Rawlings AV. The identification and localization of tryptic and chymotryptic-like enzymes in human stratum corneum. J Invest Dermatol. 1994;102:637.

    Google Scholar 

  89. King CS, Nicholls S, Barton S, et al. Is the stratum corneum of uninvolved psoriatic skin abnormal? Acta Dermatol Venereol Suppl (Stockh). 1979;59(85):95–100.

    CAS  Google Scholar 

  90. Watkinson A, Harding CR, Rawlings AV. The cornified envelope: its role on stratum corneum structure and maturation. In: Leyden JJ, Rawlings AV, editors. Skin moisturization. New York: Marcel Dekker; 2002. p. 95–117.

    Google Scholar 

  91. Candi E, et al. Transglutaminase cross linking properties of the small proline rich 1 family of cornified envelope proteins. J Biol Chem. 1999;274:7226–37.

    Article  CAS  PubMed  Google Scholar 

  92. Kim IG, Gorman JJ, et al. The deduced sequence of the novel protransglutaminase-E (TGase 3) of human and Mouse. J Biol Chem. 1993;268:12682–90.

    CAS  PubMed  Google Scholar 

  93. Nemes Z, Marekov LN, Steinert PM. Involucrin cross linking by transglutaminase 1. J Biol Chem. 1999;274:11013–21.

    Article  CAS  PubMed  Google Scholar 

  94. Cabral A, Voskamp P, Cleton-Jansen M, et al. Structural organisation and regulation of the small proline rich family of cornified envelope precursors suggest a role in adaptive barrier function. J Biol Chem. 2001;26:19231–7.

    Article  Google Scholar 

  95. Mils A, Vincent C, Croute F, et al. The expression of desmosomal and corneodesmosomal antigens shows specific variations during the terminal differentiation of epidermis and hair follicle epithelia. J Histochem Cytochem. 1992;40:1329–37.

    Article  CAS  PubMed  Google Scholar 

  96. Kashibuchi N, Hirai Y, O’Goshi K, et al. Three-dimensional analyses of individual corneocytes with atomic force microscope: morphological changes related to age, location and to the pathologic skin conditions. Skin Res Technol. 2002;8:203–11.

    Article  PubMed  Google Scholar 

  97. Harding CR, Long S, Richardson J, et al. The cornified cell envelope: an important marker of stratum corneum maturation in healthy and dry skin. Int J Cosmet Sci. 2003;25:1–11.

    Article  Google Scholar 

  98. Marks R, Nicolls S, King CS. Studies on isolated corneocytes. Int J Cosmet Sci. 1981;3:251–8.

    Article  CAS  PubMed  Google Scholar 

  99. Kunii T, Hirao H, Kikuchi K, et al. Stratum corneum lipid profile and maturation pattern of corneocytes in the outermost layer of fresh scars: the presence of immature corneocytes plays a much more important role in the barrier dysfunction than do changes in intercellular lipids. Br J Dermatol. 2003;149(4):749–56.

    Article  CAS  PubMed  Google Scholar 

  100. Mechin MC, Enji M, Nachat R, et al. The peptidylarginine deiminases expressed in human epidermis differ in their substrate specificities and subcellular locations. CMLS DO1 2005;1–12.

    Google Scholar 

  101. Harding CR, Rawlings AV. Dry skin and moisturizers. In: Loden M, Maibach H, editors. Dry skin and moisturizers. Boca Raton: CRC Press; 2006. p. 187–209. Chapter 18.

    Google Scholar 

  102. Katagiri C, Sato J, Nomura J, et al. Changes in environmental humidity affect the water-holding property of the stratum corneum and its free amino acid content, and the expression of filaggrin in the epidermis of hairless mice. J Dermatol Sci. 2003;31(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  103. Jokura Y, et al. Molecular analysis of elastic properties of the stratum corneum by solid-state C-13-nuclear magnetic resonance spectroscopy. J Invest Dermatol. 1995;104:806.

    Article  CAS  PubMed  Google Scholar 

  104. Rawlings AV, Scott IR, Harding CR, et al. Stratum corneum moisturization at the molecular level. J Invest Dermatol. 1994;103:731–40.

    Article  CAS  PubMed  Google Scholar 

  105. Takahashi M, Tezuka T. The content of free amino acids in the stratum corneum is increased in senile xerosis. Arch Dermatol Res. 2004;295(10):448–52.

    Article  CAS  PubMed  Google Scholar 

  106. Sakai S, et al. Hyaluronan exists in the normal stratum corneum. J Invest Dermatol. 2000;114:1184.

    Article  CAS  PubMed  Google Scholar 

  107. Fluhr JW, et al. Glycerol regulates stratum corneum hydration in sebaceous gland deficient (Asebia) mice. J Invest Dermatol. 2003;120:728.

    Article  CAS  PubMed  Google Scholar 

  108. Choi EH, Man MQ, Wang F, et al. Is endogenous glycerol a determinant of stratum corneum hydration in humans. J Invest Dermatol. 2005;125:288–93.

    CAS  PubMed  Google Scholar 

  109. Fluhr JW, et al. Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol. 2001;117:44.

    Article  CAS  PubMed  Google Scholar 

  110. Krein PM, Kermici M. Evidence for the existence of a self-regulated enzymatic process within the human stratum corneum- an unexpected role for urocanic acid. J Invest Dermatol. 2000;115:414.

    Article  Google Scholar 

  111. Nakagawa N, et al. Relationship between NMF (potassium and lactate) content and the physical properties of the stratum corneum in healthy subjects. J Invest Dermatol. 2004;122:755.

    Article  CAS  PubMed  Google Scholar 

  112. Katsura Y, Yoshida Y, Kawai E, et al. Urokinase-type plasminogen activator is activated in stratum corneum after barrier disruption. J Dermatol Sci. 2003;32:55–7.

    Article  CAS  Google Scholar 

  113. Rawlings AV, Hope J, Rogers J, et al. Mechanisms of desquamation: new insights into dry flaky skin conditions. Proceedings of the 17th IFSCC; 1992, vol. 2, p. 865–880.

    Google Scholar 

  114. Van Overloop L, Declercq L, Maes D. Visual scaling of human skin correlates to decreased ceramide levels and decreased stratum corneum protease activity. J Invest Dermatol. 2001;117:811.

    Google Scholar 

  115. Saint-Leger D, Francois AM, Leveque JL, et al. Stratum corneum lipids in skin xerosis. Dermatologica. 1989;178:151–5.

    Article  CAS  PubMed  Google Scholar 

  116. Chopart M, Castiel-Higounenc C, Arbey E, et al. Quantitative analysis of ceramides in stratum corneum of normal and dry skin. Stratum Corneum III; 2001.

    Google Scholar 

  117. Schreiner V, Gooris GS, Pfeiffer S, et al. Barrier characteristics of different human skin types investigated with x-ray diffraction, lipid analysis and electron microscopy imaging. J Invest Dermatol. 2000;114:654–60.

    Article  CAS  PubMed  Google Scholar 

  118. Harding CR, Richardson J, Ginger R, et al. Role of transglutaminase in the continued cross linking of cornified envelope protein during stratum corneum maturation. 22nd IFSCC Congress; 2002. p. 139.

    Google Scholar 

  119. Ginger RS, Blachford S, Rowland J, et al. Filaggrin repeat number polymorphism is associated with a dry skin phenotype. Arch Dermatol Res. 2005;297(6):235–41.

    Article  CAS  PubMed  Google Scholar 

  120. Engelke M, Jensen JM, Ekanayake-Mudiyanselage S, et al. Effects of xerosis and ageing on epidermal proliferation and differentiation. Br J Dermatol. 1997;137(2):219–25.

    Article  CAS  PubMed  Google Scholar 

  121. Leveque JL, Grove G, de Rigal J, et al. Biophysical characterization of dry facial skin. J Soc Cosmet Chem. 1987;82:171–7.

    Google Scholar 

  122. Bhawan J, Oh CH, Lew R, et al. Histopathologic differences in the photoaging process in facial versus arm skin. Am J Dermatopathol. 1992;14(3):224–30.

    Article  CAS  PubMed  Google Scholar 

  123. Egawa M, Tagami H. Comparison of the depth profiles of water and water-binding substances in the stratum corneum determined in vivo by Raman spectroscopy between the cheek and volar forearm skin: effects of age, seasonal changes and artificial forced hydration. Br J Dermatol. 2008;158(2):251–60.

    Article  CAS  PubMed  Google Scholar 

  124. Voegeli R, Rawlings AV, Doppler S, et al. Increased basal transepidermal water loss leads to elevation of some but not all stratum corneum serine proteases. Int J Cosmet Sci. 2008;30(6):435–42.

    Article  CAS  PubMed  Google Scholar 

  125. Cork MJ, Robinson DA, Vasilopoulos Y, et al. New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J Allergy Clin Immunol. 2006;118(1):3–21. quiz 22-23.

    Article  CAS  PubMed  Google Scholar 

  126. Matts PJ, Gray J, Rawlings AV. The “Dry Skin Cycle” – a new model of dry skin and mechanisms for intervention, International Congress and Symposium Series. London: The Royal Society of Medicine Press Ltd; 2005. p. 1–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony V. Rawlings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rawlings, A.V. (2017). The Stratum Corneum and Aging. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics