Skip to main content

Possible Involvement of Basement Membrane Damage by Matrix Metalloproteinases, Serine Proteinases, and Heparanase in Skin Aging Process

  • Reference work entry
  • First Online:
Textbook of Aging Skin
  • 367 Accesses

Abstract

This paper briefly reviews the characteristics of photoaged skin, and the mechanisms involved in skin photoaging and repair. Sun-exposed skin shows superficial changes, such as wrinkles, sagging, telangiectasis and pigmentary changes, pathological changes such as neoplasia, and also many internal changes in the structure and function of epidermis, basement membrane, and dermis. These changes (so-called photoaging) are predominantly due to the ultraviolet (UV) component of sunlight.

Enzymes such as matrix metalloproteinases (MMPs), urinary plasminogen activator (uPA)/plasmin, and heparanase are increased in epidermis of UV-irradiated skin. These enzymes degrade epidermal basement membrane (BM) components, dermal collagen fibers, and elastic fibers. The BM, which is located at the dermal-epidermal junction, controls dermal-epidermal signaling and is essential for maintaining a healthy epidermis and dermis. Repeated BM damage occurs in sun-exposed skin compared to unexposed skin, leading to epidermal and dermal deterioration and accelerated skin aging. UV-induced skin damage is cumulative and leads to premature aging of skin. However, appropriate daily skin treatment may ameliorate photoaging by inhibiting processes causing damage and enhancing repair processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tagami H. Functional characteristics of the stratum corneum in photoaged skin in comparison with those found in intrinsic aging. Arch Dermatol Res. 2008;300 Suppl 1:S1–6.

    PubMed  Google Scholar 

  2. Lavker RM. Structural alterations in exposed and unexposed aged skin. J Invest Dermatol. 1979;73(1):59–66.

    CAS  PubMed  Google Scholar 

  3. Kligman AM, et al. Topical tretinoin for photoaged skin. J Am Acad Dermatol. 1986;15(4 Pt 2):836–59.

    CAS  PubMed  Google Scholar 

  4. Ryan MC, et al. The functions of laminins: lessons from in vivo studies. Matrix Biol. 1996;15(6):369–81.

    CAS  PubMed  Google Scholar 

  5. Bohnert A, et al. Epithelial-mesenchymal interactions control basement membrane production and differentiation in cultured and transplanted mouse keratinocytes. Cell Tissue Res. 1986;244(2):413–29.

    CAS  PubMed  Google Scholar 

  6. Watt FM. Selective migration of terminally differentiating cells from the basal layer of cultured human epidermis. J Cell Biol. 1984;98(1):16–21.

    CAS  PubMed  Google Scholar 

  7. Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A. 1987;84(8):2302–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hirai Y, et al. Epimorphin: a mesenchymal protein essential for epithelial morphogenesis. Cell. 1992;69(3):471–81.

    CAS  PubMed  Google Scholar 

  9. Inoue S. Ultrastructure of basement membranes. Int Rev Cytol. 1989;117:57–98.

    CAS  PubMed  Google Scholar 

  10. Amano S, et al. Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 gamma 2 chain. J Biol Chem. 2000;275(30):22728–35.

    CAS  PubMed  Google Scholar 

  11. Goldfinger LE, Stack MS, Jones JC. Processing of laminin-5 and its functional consequences: role of plasmin and tissue-type plasminogen activator. J Cell Biol. 1998;141(1):255–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Koshikawa N, et al. Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin gamma 2 chain. J Biol Chem. 2005;280(1):88–93.

    CAS  PubMed  Google Scholar 

  13. Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol. 1995;7(5):728–35.

    CAS  PubMed  Google Scholar 

  14. Reynolds JJ. Collagenases and tissue inhibitors of metalloproteinases: a functional balance in tissue degradation. Oral Dis. 1996;2(1):70–6.

    CAS  PubMed  Google Scholar 

  15. Fassina G, et al. Tissue inhibitors of metalloproteases: regulation and biological activities. Clin Exp Metastasis. 2000;18(2):111–20.

    CAS  PubMed  Google Scholar 

  16. Goldberg GI, et al. Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc Natl Acad Sci U S A. 1989;86(21):8207–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Saksela O. Plasminogen activation and regulation of pericellular proteolysis. Biochim Biophys Acta. 1985;823(1):35–65.

    CAS  PubMed  Google Scholar 

  18. Morioka S, Jensen PJ, Lazarus GS. Human epidermal plasminogen activator. Characterization, localization, and modulation. Exp Cell Res. 1985;161(2):364–72.

    CAS  PubMed  Google Scholar 

  19. Marschall C, et al. UVB increases urokinase-type plasminogen activator receptor (uPAR) expression. J Invest Dermatol. 1999;113(1):69–76.

    CAS  PubMed  Google Scholar 

  20. Plow EF, et al. The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J Cell Biol. 1986;103(6 Pt 1):2411–20.

    CAS  PubMed  Google Scholar 

  21. Katsuta Y, et al. Urokinase-type plasminogen activator is activated in stratum corneum after barrier disruption. J Dermatol Sci. 2003;32(1):55–7.

    CAS  PubMed  Google Scholar 

  22. Denda M, et al. Trans-4-(Aminomethyl)cyclohexane carboxylic acid (T-AMCHA), an anti-fibrinolytic agent, accelerates barrier recovery and prevents the epidermal hyperplasia induced by epidermal injury in hairless mice and humans. J Invest Dermatol. 1997;109(1):84–90.

    CAS  PubMed  Google Scholar 

  23. Nakajima M, et al. Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J Biol Chem. 1984;259(4):2283–90.

    CAS  PubMed  Google Scholar 

  24. Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta. 2001;1471(3):M99–108.

    CAS  PubMed  Google Scholar 

  25. Bernard D, et al. Purification and characterization of the endoglycosidase heparanase 1 from human plantar stratum corneum: a key enzyme in epidermal physiology? J Invest Dermatol. 2001;117(5):1266–73.

    CAS  PubMed  Google Scholar 

  26. Friedl A, et al. Differential binding of fibroblast growth factor-2 and -7 to basement membrane heparan sulfate: comparison of normal and abnormal human tissues. Am J Pathol. 1997;150(4):1443–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fuki II, Iozzo RV, Williams KJ. Perlecan heparan sulfate proteoglycan. A novel receptor that mediates a distinct pathway for ligand catabolism. J Biol Chem. 2000;275(40):31554.

    CAS  PubMed  Google Scholar 

  28. Patel VN, et al. Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development. 2007;134(23):4177–86.

    CAS  PubMed  Google Scholar 

  29. Sebollela A, et al. Heparin-binding sites in granulocyte-macrophage colony-stimulating factor. Localization and regulation by histidine ionization. J Biol Chem. 2005;280(36):31949–56.

    CAS  PubMed  Google Scholar 

  30. Perrimon N, Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature. 2000;404(6779):725–8.

    CAS  PubMed  Google Scholar 

  31. Vlodavsky I, et al. Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev. 1996;15(2):177–86.

    CAS  PubMed  Google Scholar 

  32. Bell E, et al. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science. 1981;211(4486):1052–4.

    CAS  PubMed  Google Scholar 

  33. Amano S, et al. Importance of balance between extracellular matrix synthesis and degradation in basement membrane formation. Exp Cell Res. 2001;271(2):249–62.

    CAS  PubMed  Google Scholar 

  34. Tsunenaga M, et al. Laminin 5 can promote assembly of the lamina densa in the skin equivalent model. Matrix Biol. 1998;17(8–9):603–13.

    CAS  PubMed  Google Scholar 

  35. Sarret Y, et al. Constitutive synthesis of a 92-kDa keratinocyte-derived type IV collagenase is enhanced by type I collagen and decreased by type IV collagen matrices. J Invest Dermatol. 1992;99(6):836–41.

    CAS  PubMed  Google Scholar 

  36. Sudbeck BD, et al. Collagen-stimulated induction of keratinocyte collagenase is mediated via tyrosine kinase and protein kinase C activities. J Biol Chem. 1994;269(47):30022–9.

    CAS  PubMed  Google Scholar 

  37. Koivukangas V, et al. UV irradiation induces the expression of gelatinases in human skin in vivo. Acta Derm Venereol. 1994;74(4):279–82.

    CAS  PubMed  Google Scholar 

  38. Fisher GJ, et al. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature. 1996;379(6563):335–9.

    CAS  PubMed  Google Scholar 

  39. Inomata S, et al. Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse. J Invest Dermatol. 2003;120(1):128–34.

    CAS  PubMed  Google Scholar 

  40. Amano S, et al. Protective effect of matrix metalloproteinase inhibitors against epidermal basement membrane damage: skin equivalents partially mimic photoageing process. Br J Dermatol. 2005;153 Suppl 2:37–46.

    CAS  PubMed  Google Scholar 

  41. Miralles F, et al. UV irradiation induces the murine urokinase-type plasminogen activator gene via the c-Jun N-terminal kinase signaling pathway: requirement of an AP1 enhancer element. Mol Cell Biol. 1998;18(8):4537–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Scharffetter K, et al. UVA irradiation induces collagenase in human dermal fibroblasts in vitro and in vivo. Arch Dermatol Res. 1991;283(8):506–11.

    CAS  PubMed  Google Scholar 

  43. Ogura Y, et al. Plasmin induces degradation and dysfunction of laminin 332 (laminin 5) and impaired assembly of basement membrane at the dermal-epidermal junction. Br J Dermatol. 2008;159(1):49–60.

    CAS  PubMed  Google Scholar 

  44. Fleischmajer R, et al. Skin fibroblasts are the only source of nidogen during early basal lamina formation in vitro. J Invest Dermatol. 1995;105(4):597–601.

    CAS  PubMed  Google Scholar 

  45. Iriyama S, et al. Influence of heparan sulfate chains in proteoglycan at the dermal-epidermal junction on epidermal homeostasis. Exp Dermatol 2011;20(10):810–4.

    Google Scholar 

  46. Iriyama S, et al. Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal-epidermal junction in human skin. Arch Dermatol Res. 2011;303(4): 53–61.

    Google Scholar 

  47. Iriyama S, et al. Key role of heparan sulfate chains in assembly of anchoring complex at the dermal-epidermal junction. Exp Dermatol. 2011;20(11):953–5.

    CAS  PubMed  Google Scholar 

  48. Behrens DT, et al. The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens. J Biol Chem. 2012;287(22):18700–9.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Amano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Amano, S. (2017). Possible Involvement of Basement Membrane Damage by Matrix Metalloproteinases, Serine Proteinases, and Heparanase in Skin Aging Process. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics