Skip to main content

Topical Peptides and Proteins for Aging Skin

  • Reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

By 2030, the preponderance of older individuals over younger ones will transform the shape of the age distribution graph into a rectangle rather than the current pyramid observed. This chapter summarizes the characteristics and in vitro and in vivo studies on effect of peptides and proteins on aging skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kosmadaki MG, Gilchrest BA. The demographics of aging in the United States: implications for dermatology. Arch Dermatol. 2002;138:1427–8.

    Article  PubMed  Google Scholar 

  2. Ranade VV. Drug delivery systems. 6. Transdermal drug delivery. J Clin Pharmacol. 1991;31:401–18.

    Article  CAS  PubMed  Google Scholar 

  3. Buri P, Puisieux F, Doelker E, et al. Formes pharmaceutiques nouvelles. Paris: Technique et Documentation; 1985.

    Google Scholar 

  4. Vecchia BE, Bunge AL. Evaluating the transdermal permeability of chemicals. In: Guy RH, Hadgraft J, editors. Transdermal drug delivery (electronic resource). New York: Dekker; 2003.

    Google Scholar 

  5. Guy RH. Current status and future prospects of transdermal drug delivery. Pharm Res. 1996;13:1765–9.

    Article  CAS  PubMed  Google Scholar 

  6. Roberts MS, Cross SE, Pellett MA. Skin transport. In: Walters AW, editor. Dermatological and transdermal formulations. New York: Dekker; 2002. p. 121.

    Google Scholar 

  7. Cullander C, Guy RH. Routes of delivery: case studies (6). Trasdermal delivery of peptides and proteins. Adv Drug Deliv Rev. 1992;8:291–329.

    Article  CAS  Google Scholar 

  8. Nakamura RM, Einck L, Velmonte MA, Kawajiri K, Ang CF, Delasllagas CE, et al. Detection of active tuberculosis by an MPB-64 transdermal patch: a field study. Scand J Infect Dis. 2001;33:405–7.

    Article  CAS  PubMed  Google Scholar 

  9. Pai M, Kalantari S, Dheda K. New tools and emerging technologies for the diagnosis of tuberculosis: part II. Active tuberculosis and drug resistance. Expert Rev Mol Diagn. 2006;6:423–32.

    Article  CAS  PubMed  Google Scholar 

  10. Billich A, Aschauer H, Aszodi A, Stuetz A. Percutaneous absorption of drugs used in atopic eczema: pimecrolimus permeates less through skin than corticosteroids and tacrolimus. Int J Pharm. 2004;269:29–35.

    Article  CAS  PubMed  Google Scholar 

  11. Weiss M, Fresneau M, Monius T, Stutz A, Billich A. Binding of pimecrolimus and tacrolimus to skin and plasma proteins: implications for systemic exposure after topical application. Drug Metab Dispos. 2008;36:1812–18.

    Article  CAS  PubMed  Google Scholar 

  12. Frech SA, Dupont HL, Bourgeois AL, McKenzie R, Belkind-Gerson J, Figueroa JF, et al. Use of a patch containing heat-labile toxin from Escherichia coli against travellers’ diarrhoea: a phase II, randomised, double-blind, placebo-controlled field trial. Lancet. 2008;371:2019–25.

    Article  CAS  PubMed  Google Scholar 

  13. Billich A, Vyplel H, Grassberger M, Schmook FP, Steck A, Stuetz A. Novel cyclosporin derivatives featuring enhanced skin penetration despite increased molecular weight. Bioorg Med Chem. 2005;13:3157–67.

    Article  CAS  PubMed  Google Scholar 

  14. Smith EW, Maibach HI. Percutaneous penetration enhancers. New York: Taylor & Francis; 2006.

    Google Scholar 

  15. Pillai O, Panchagnula R. Transdermal delivery of insulin from poloxamer gel: ex vivo and in vivo skin permeation studies in rat using iontophoresis and chemical enhancers. J Control Release. 2003;89:127–40.

    Article  CAS  PubMed  Google Scholar 

  16. Silva R, Little C, Ferreira H, Cavaco-Paulo A. Incorporation of peptides in phospholipid aggregates using ultrasound. Ultrason Sonochem. 2008;15:1026–32.

    Article  CAS  PubMed  Google Scholar 

  17. Goebel A, Neubert RH. Dermal peptide delivery using colloidal carrier systems. Skin Pharmacol Physiol. 2008;21:3–9.

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Shen Y, Guo X, Zhang C, Yang W, Ma M, et al. Transdermal protein delivery by a coadministered peptide identified via phage display. Nat Biotechnol. 2006;24:455–60.

    Article  CAS  PubMed  Google Scholar 

  19. Foldvari M, Attah-Poku S, Hu J, Li Q, Hughes H, Babiuk LA, et al. Palmitoyl derivatives of interferon alpha: potential for cutaneous delivery. J Pharm Sci. 1998;87:1203–8.

    Article  CAS  PubMed  Google Scholar 

  20. Robinson LR, Fitzgerald NC, Doughty DG, Dawes NC, Berge CA, Bissett DL. Topical palmitoyl pentapeptide provides improvement in photoaged human facial skin. Int J Cosmet Sci. 2005;27:155–60.

    Article  CAS  PubMed  Google Scholar 

  21. Abdulghani AA, Sherr A, Shirin S, Solodkina G, Morales Tapia E, Wolf B, et al. Effects of topical creams containing vitamin C, a copper-binding peptide cream and melatonin compared with tretinoin on the ultrastructure of normal skin. Dis Manag Clin Outcomes. 1998;1:136–41.

    Article  Google Scholar 

  22. Osborne R, Robinson LR, Mullins L, Raleigh P. Use of a facial moisturizer containing palmitoyl pentapeptide improves the appearance of aging skin. J Am Acad Dermatol. 2005;52:96.

    Google Scholar 

  23. Blanes-Mira C, Clemente J, Jodas G, Gil A, Fernandez-Ballester G, Ponsati B, et al. A synthetic hexapeptide (Argireline) with antiwrinkle activity. Int J Cosmet Sci. 2002;24:303–10.

    Article  CAS  PubMed  Google Scholar 

  24. Samuel M, Brooke RC, Hollis S, Griffiths CE. Interventions for photodamaged skin. Cochrane Database Syst Rev. 2005;CD001782.

    Google Scholar 

  25. Mazurowska L, Mojski M. Biological activities of selected peptides: skin penetration ability of copper complexes with peptides. J Cosmet Sci. 2008;59:59–69.

    CAS  PubMed  Google Scholar 

  26. Ruland A, Kreuter J, Rytting JH. Transdermal delivery of the tetrapeptide hisetal (melanotropin (6-9)): II. Effect of various penetration enhancers. In vitro study across human skin. Int J Pharm. 1994;103:77–80.

    Article  CAS  Google Scholar 

  27. Ruland A, Kreuter J, Rytting JH. Transdermal delivery of the tetrapeptide hisetal (melanotropin (6-9)). I. Effect of various penetration enhancers: in vitro study across hairless mouse skin. Int J Pharm. 1994;101:57–61.

    Article  CAS  Google Scholar 

  28. Mazurowska L, Nowak-Buciak K, Mojski M. ESI-MS method for in vitro investigation of skin penetration by copper-amino acid complexes: from an emulsion through a model membrane. Anal Bioanal Chem. 2007;388:1157–63.

    Article  CAS  PubMed  Google Scholar 

  29. Ruland A, Kreuter J. Transdermal permeability and skin accumulation of amino acids. Int J Pharm. 1991;72:149–55.

    Article  CAS  Google Scholar 

  30. Braun E, Wagner A, Furnschlief E, Katinger H, Vorauer-Uhl K. Experimental design for in vitro skin penetration study of liposomal superoxide dismutase. J Pharm Biomed Anal. 2006;40:1187–97.

    Article  CAS  PubMed  Google Scholar 

  31. Pickart L, Thaler MM. Tripeptide in human serum which prolongs survival of normal liver cells and stimulates growth in neoplastic liver. Nat New Biol. 1973;243:85–7.

    CAS  PubMed  Google Scholar 

  32. Maquart FX, Siméon A, Pasco S, Monboisse JC. Regulation of cell activity by the extracellular matrix: the concept of matrikines. J Soc Biol. 1999;193:423–8.

    CAS  PubMed  Google Scholar 

  33. Simeon A, Wegrowski Y, Bontemps Y, Maquart FX. Expression of glycosaminoglycans and small proteoglycans in wounds: modulation by the tripeptide-copper complex glycyl-l-histidyl-l-lysine-Cu(2+). J Invest Dermatol. 2000;115:962–8.

    Article  CAS  PubMed  Google Scholar 

  34. Simeon A, Emonard H, Hornebeck W, Maquart FX. The tripeptide-copper complex glycyl-l-histidyl-l-lysine-Cu2+ stimulates matrix metalloproteinase-2 expression by fibroblast cultures. Life Sci. 2000;67:2257–65.

    Article  CAS  PubMed  Google Scholar 

  35. Buffoni F, Pino R, Dal Pozzo A. Effect of tripeptide-copper complexes on the process of skin wound healing and on cultured fibroblasts. Arch Int Pharmacodyn Ther. 1995;330:345–60.

    CAS  PubMed  Google Scholar 

  36. Wegrowski Y, Maquart FX, Borel JP. Stimulation of sulfated glycosaminoglycan synthesis by the tripeptide-copper complex glycyl-l-histidyl-l-lysine-Cu2+. Life Sci. 1992;51:1049–56.

    Article  CAS  PubMed  Google Scholar 

  37. Maquart FX, Pickart L, Laurent M, Gillery P, Monboisse JC, Borel JP. Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyl-l-histidyl-l-lysine-Cu2+. FEBS Lett. 1988;238:343–6.

    Article  CAS  PubMed  Google Scholar 

  38. Lintner K. Promoting production in the extracellular matrix without compromising barrier. Cutis. 2002;70:13–6, discussion 21–3.

    PubMed  Google Scholar 

  39. Croda, Croda USA – News and News Releases, Croda.

    Google Scholar 

  40. Pentapharm, Syn®-Coll, Basel.

    Google Scholar 

  41. Centerchem, Decorinyl™, Basel.

    Google Scholar 

  42. Puig A, Anton JMG, Mangues M. A new decorin-like tetrapeptide for optimal organization of collagen fibres. Int J Cosmet Sci. 2008;30:97–104.

    Article  CAS  PubMed  Google Scholar 

  43. Croda, Biopeptide EL™, Edison.

    Google Scholar 

  44. A.p.c. products, Peptamide™6, A firming hexapeptide. South Plainfield.

    Google Scholar 

  45. Osborne R, Mullins L, Jarrold B, Lintner K. In vitro skin structure benefits with a new antiaging peptide, Pal-KT. J Am Acad Dermatol. 2008;58:ab25 (Abstract).

    Google Scholar 

  46. Tajima S, Wachi H, Uemura Y, Okamoto K. Modulation by elastin peptide VGVAPG of cell proliferation and elastin expression in human skin fibroblasts. Arch Dermatol Res. 1997;289:489–92.

    Article  CAS  PubMed  Google Scholar 

  47. Wachi H, Seyama Y, Yamashita S, Suganami H, Uemura Y, Okamoto K, et al. Stimulation of cell proliferation and autoregulation of elastin expression by elastin peptide VPGVG in cultured chick vascular smooth muscle cells. FEBS Lett. 1995;368:215–19.

    Article  CAS  PubMed  Google Scholar 

  48. Fujimoto N, Tajima S, Ishibashi A. Elastin peptides induce migration and terminal differentiation of cultured keratinocytes via 67 kDa elastin receptor in vitro: 67 kDa elastin receptor is expressed in the keratinocytes eliminating elastic materials in elastosis perforans serpiginosa. J Invest Dermatol. 2000;115:633–9.

    Article  CAS  PubMed  Google Scholar 

  49. Chang CH, Kawa Y, Tsai RK, Shieh JH, Lee JW, et al. Melanocyte precursors express elastin binding protein and elastin-derived peptide (VGVAPG) stimulates their melanogenesis and dendrite formation. J Dermatol Sci. 2008;51:158–80.

    Article  CAS  PubMed  Google Scholar 

  50. Gruber JV, Bouldin L, Lou K. Can a topical scalp treatment reduce hair bulb extraction? J Cosmet Sci. 2007;58:369–74.

    PubMed  Google Scholar 

  51. Ennamany R, Saboureau D, Mekideche N, Creppy EE. SECMA 1, a mitogenic hexapeptide from Ulva algae modulates the production of proteoglycans and glycosaminoglycans in human foreskin fibroblast. Hum Exp Toxicol. 1998;17:18–22.

    Article  CAS  PubMed  Google Scholar 

  52. Dumas M, Sadick NS, Noblesse E, Juan M, Lachmann-Weber N, Boury-Jamot M, et al. Hydrating skin by stimulating biosynthesis of aquaporins. J Drugs Dermatol. 2007;6:s20–4.

    PubMed  Google Scholar 

  53. Pauly G, Contet-Audonneau J, Moussou P, Danoux L, Bardey V, Freis O, et al. Small proteoglycans in the skin: new targets in the fight against aging. IFSCC. 2008;11:21–9.

    CAS  Google Scholar 

  54. Marikovsky M, Breuing K, Liu PY, Eriksson E, Higashiyama S, Farber P, et al. Appearance of heparin-binding EGF-like growth factor in wound fluid as a response to injury. Proc Natl Acad Sci U S A. 1993;90:3889–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deplewski D, Rosenfield RL. Growth hormone and insulin-like growth factors have different effects on sebaceous cell growth and differentiation. Endocrinology. 1999;140:4089–94.

    CAS  PubMed  Google Scholar 

  56. Cohen IK, Crossland MC, Garrett A, Diegelmann RF. Topical application of epidermal growth factor onto partial-thickness wounds in human volunteers does not enhance reepithelialization. Plast Reconstr Surg. 1995;96:251–4.

    Article  CAS  PubMed  Google Scholar 

  57. Brown GL, Nanney LB, Griffen J, Cramer AB, Yancey JM, Curtsinger III LJ, et al. Enhancement of wound healing by topical treatment with epidermal growth factor. N Engl J Med. 1989;321:76–9.

    Article  CAS  PubMed  Google Scholar 

  58. Miller CO, Skong F, Von Saltza MH, Strong FM. Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc. 1955;77:1392.

    Article  CAS  Google Scholar 

  59. Miller CO, Skong F, Okumura FS, Von Saltza MH, Strong FM. Isolation, structure, and synthesis of kinetin, a substance promoting cell division. J Am Chem Soc. 1956;78:1375–80.

    Article  CAS  Google Scholar 

  60. Berge U, Kristensen P, Rattan SI. Kinetin-induced differentiation of normal human keratinocytes undergoing aging in vitro. Ann N Y Acad Sci. 2006;1067:332–6.

    Article  CAS  PubMed  Google Scholar 

  61. Sharma SP, Kaur P, Rattan SIS. Plant growth hormone kinetin delays ageing, prolongs the lifespan and slows down development of the fruitfly Zaprionus paravittiger. Biochem Biophys Res Commun. 1995;216:1067–71.

    Article  CAS  PubMed  Google Scholar 

  62. Rattan SIS, Clark BFC. Kinetin delays the onset of ageing characteristics in human fibroblasts. Biochem Biophys Res Commun. 1994;201:665–72.

    Article  CAS  PubMed  Google Scholar 

  63. Barciszewski J, Rattan SI, Siboska G, Clark BFC. Kinetin- 45 years on. Plant Sci. 1999;148:37–45.

    Article  CAS  Google Scholar 

  64. Olsen A, Siboska GE, Clark BFC, Rattan SIS. N6-furfuryladenine, kinetin, protects against Fenton reaction-mediated oxidative damage to DNA. Biochem Biophys Res Commun. 1999;265:499–502.

    Article  CAS  PubMed  Google Scholar 

  65. Verbeke P, Siboska GE, Clark BFC, Rattan SIS. Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem Biophys Res Commun. 2000;276:1265–70.

    Article  CAS  PubMed  Google Scholar 

  66. Hipkiss AR. On the “struggle between chemistry and biology during aging” – implications for DNA repair apoptosis and proteolysis, and a novel route of intervention. Biogerontology. 2001;2:173–8.

    Article  CAS  PubMed  Google Scholar 

  67. Kimura T, Doi K. Depigmentation and rejuvenation effects of kinetin on the aged skin of hairless descendants of Mexican hairless dogs. Rejuvenation Res. 2004;7:32–9.

    Article  CAS  PubMed  Google Scholar 

  68. Katz BE, Bruck MC. Efficacy and tolerability of kinetin 0.1% cream for improving the signs of photoaging in facial and neck skin. Cosmet Dermatol. 2006;19:736–41.

    Google Scholar 

  69. McCullough JL, Weinstein GD. Clinical study of safety and efficacy of using topical kinetin 0.1% (Kinerase(registered trademark)) to treat photodamaged skin. Cosmet Dermatol. 2002;15:29–32.

    Google Scholar 

  70. Levy SB. Kinetin. In: Elsner P, Maibach HI, editors. Cosmeceuticals and active cosmetics. New York: Marcel Dekker; 2005. p. 407–19.

    Google Scholar 

  71. Dickens MS, Levy SB, Helman MD, Nucci JE. Kinetin containing lotion compared with retinol containing lotion; comparable improvements in the signs of photoaging. In: American Academy of Dermatology 60th Annual Meeting, New Orleans; 2002. p. 28.

    Google Scholar 

  72. Chiu PC, Chan CC, Lin HM, Chiu HC. The clinical anti-aging effects of topical kinetin and niacinamide in Asians: a randomized, double-blind, placebo-controlled, split-face comparative trial. J Cosmet Dermatol. 2007;6:243–9.

    Article  PubMed  Google Scholar 

  73. McCullough JL, Garcia RL, Reece B. A clinical study of topical Pyratine 6 for improving the appearance of photodamaged skin. J Drugs Dermatol. 2008;7:131–5.

    PubMed  Google Scholar 

  74. Arendt J. Melatonin. Clin Endocrinol (Oxf). 1988;29:205–29.

    Article  CAS  Google Scholar 

  75. Fischer TW, Elsner P. The antioxidative potential of melatonin in the skin. Curr Probl Dermatol. 2001;29:165–74.

    Article  CAS  PubMed  Google Scholar 

  76. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992;59:1609–23.

    Article  CAS  PubMed  Google Scholar 

  77. Fischer T, Wigger-Alberti W, Elsner P. Melatonin in dermatology: experimental and clinical aspects. Hautarzt. 1999;50:5–11.

    Article  CAS  PubMed  Google Scholar 

  78. Karbownik M, Reiter RJ. Melatonin protects against oxidative stress caused by (delta)-aminolevulinic acid: implications for cancer reduction. Cancer Invest. 2002;20:276–86.

    Article  CAS  PubMed  Google Scholar 

  79. Chun Kim B, Sung Shon B, Wook Ryoo Y, Pyo Kim S, Suk Lee K. Melatonin reduces X-ray irradiation-induced oxidative damages in cultured human skin fibroblasts. J Dermatol Sci. 2001;26:194–200.

    Article  Google Scholar 

  80. Young Wook R, Seong Il S, Kyo Cheol M, Byung Chun K, Kyu Suk L. The effects of the melatonin on ultraviolet-B irradiated cultured dermal fibroblasts. J Dermatol Sci. 2001;27:162–9.

    Article  Google Scholar 

  81. Fischer TW, Scholz G, Knoll B, Hipler UC, Eisner P. Melatonin reduces UV-induced reactive oxygen species in a dose-dependent manner in IL-3-stimulated leukocytes. J Pineal Res. 2001;31:39–45.

    Article  CAS  PubMed  Google Scholar 

  82. Fischer TW, Scholz G, Knoll B, Hipler UC, Elsner P. Melatonin suppresses reactive oxygen species in UV-irradiated leukocytes more than vitamin C and trolox. Skin Pharmacol Appl Skin Physiol. 2002;15:367–73.

    Article  CAS  PubMed  Google Scholar 

  83. Fischer T, Bangha E, Elsner P, Kistler GS. Suppression of UV-induced erythema by topical treatment with melatonin. Influence of the application time point. Biol Signals Recept. 1999;8:132–5.

    Article  CAS  PubMed  Google Scholar 

  84. Ghersetich I, Comacchi C, Lotti T. Immunohistochemical and ultrastructural investigation of multiple common warts before and after therapy with alpha-interferon. G Ital Dermatol Venereol. 1992;127:207–10.

    Google Scholar 

  85. Ghersetich I, Lotti T. Alpha-interferon cream restores decreased levels of Langerhans/indeterminate (CD1a+) cells in aged and PUVA-treated skin. Skin Pharmacol. 1994;7:118–20.

    Article  CAS  PubMed  Google Scholar 

  86. Frank S, Madlener M, Werner S. Transforming growth factors beta1, beta2, and beta3 and their receptors are differentially regulated during normal and impaired wound healing. J Biol Chem. 1996;271:10188–93.

    Article  CAS  PubMed  Google Scholar 

  87. Li Y, Fan J, Chen M, Li W, Woodley DT. Transforming growth factor-alpha: a major human serum factor that promotes human keratinocyte migration. J Invest Dermatol. 2006;126:2096–105.

    Article  CAS  PubMed  Google Scholar 

  88. Govinden R, Bhoola KD. Genealogy, expression, and cellular function of transforming growth factor-beta. Pharmacol Ther. 2003;98:257–65.

    Article  CAS  PubMed  Google Scholar 

  89. Rao J, Ehrlich M, Goldman MP. Facial skin rejuvenation with a novel topical compound containing transforming growth factor (beta)1 and vitamin C. Cosmet Dermatol. 2004;17:705–10 + 13.

    Google Scholar 

  90. Ehrlich M, Rao J, Pabby A, Goldman MP. Improvement in the appearance of wrinkles with topical transforming growth factor beta(1) and l-ascorbic acid. Dermatol Surg. 2006;32:618–25.

    CAS  PubMed  Google Scholar 

  91. Fitzpatrick RE, Rostan EF. Reversal of photodamage with topical growth factors: a pilot study. J Cosmet Laser Ther. 2003;5:25–34.

    Article  PubMed  Google Scholar 

  92. Gold MH, Goldman MP, Biron J. Efficacy of novel skin cream containing mixture of human growth factors and cytokines for skin rejuvenation. J Drugs Dermatol. 2007;6:197–201.

    PubMed  Google Scholar 

  93. Lupo ML, Cohen JL, Rendon MI. Novel eye cream containing a mixture of human growth factors and cytokines for periorbital skin rejuvenation. J Drugs Dermatol. 2007;6:725–9.

    PubMed  Google Scholar 

  94. Gold MH, Goldman MP, Biron J. Human growth factor and cytokine skin cream for facial skin rejuvenation as assessed by 3D in vivo optical skin imaging. J Drugs Dermatol. 2007;6:1018–23.

    PubMed  Google Scholar 

  95. Watson RE, Long SP, Bowden JJ, Bastrilles JY, Barton SP, Griffiths CE. Repair of photoaged dermal matrix by topical application of a cosmetic “antiageing” product. Br J Dermatol. 2008;158:472–7.

    Article  CAS  PubMed  Google Scholar 

  96. Dal Farra C, Bauza E, Domloge N. Heat shock proteins for cosmeceuticals. In: Elsner P, Maibach HI, editors. Cosmeceuticals and active cosmetics. New York: Marcel Dekker; 2005. p. 523–36.

    Google Scholar 

  97. Botto J, Cucumel K, Dal Farra C, Domloge N. Treatment of human cells with Hsp-70-rich yeast extract enhances cell thermotolerance and resistance to stress. J Invest Dermatol. 2001;117:452.

    Google Scholar 

  98. Cucumel K, Botto J, Bauza E, Dal Farra C, Roetto R, Domloge N. Artemia extract induces Hsp70 in human cells and enhances cell protection from stress. J Invest Dermatol. 2001;117:454.

    Google Scholar 

  99. Domloge N, Bauza E, Cucumel K, Peyronel D, Dal Farra C. Artemia extract toward more extensive sun protection. Cosmet Toiletries. 2002;2002:69–78.

    Google Scholar 

  100. Bauza E, Dal Farra C, Domloge N. Hsp70 induction by Artemia extract exhibits anti-inflammatory effect and down-regulates IL-1 and IL-8 synthesis in human hacat cells. J Invest Dermatol. 2001;117:415.

    Google Scholar 

  101. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein hsp70 in protection against stress- induced apoptosis. Mol Cell Biol. 1997;17:5317–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, et al. Hsp70 prevents activation of stress kinases: a novel pathway of cellular thermotolerance. J Biol Chem. 1997;272:18033–7.

    Article  CAS  PubMed  Google Scholar 

  103. Gutsmann-Conrad A, Heydari AR, You S, Richardson A. The expression of heat shock protein 70 decreases with cellular senescence in vitro and in cells derived from young and old human subjects. Exp Cell Res. 1998;241:404–13.

    Article  CAS  PubMed  Google Scholar 

  104. Wu B, Gu MJ, Heydari AR, Richardson A. The effect of age on the synthesis of two heat shock proteins in the HSP70 family. J Gerontol. 1993;48:B50–6.

    Article  CAS  PubMed  Google Scholar 

  105. Blake MJ, Fargnoli J, Gershon D, Holbrook NJ. Concomitant decline in heat-induced hyperthermia and HSP70 mRNA expression in aged rats. Am J Physiol Regul Integr Comp Physiol. 1991;260:R663–7.

    CAS  Google Scholar 

  106. Pardue S, Groshan K, Raese JD, Morrison-Bogorad M. Hsp70 mRNA induction is reduced in neurons of aged rat hippocampus after thermal stress. Neurobiol Aging. 1992;13:661–72.

    Article  CAS  PubMed  Google Scholar 

  107. Fargnoli J, Kunisada T, Fornace Jr AJ, Schneider EL, Holbrook NJ. Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proc Natl Acad Sci U S A. 1990;87:846–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Muramatsu T, Hataoko M, Tada H, Shirai T, Ohnishi T. Age-related decrease in the inductability of heat shock protein 72 in normal human skin. Br J Dermatol. 1996;134:1035–8.

    Article  CAS  PubMed  Google Scholar 

  109. Cucumel K, Dal Farra C, Domloge N. Artemia extract “compensates” for age-related decrease of Hsp70 in skin. J Invest Dermatol. 2002;119:257.

    Google Scholar 

  110. Cauchard JH, Berton A, Godeau G, Hornebeck W, Bellon G. Activation of latent transforming growth factor beta 1 and inhibition of matrix metalloprotease activity by a thrombospondin-like tripeptide linked to elaidic acid. Biochem Pharmacol. 2004;67:2013–22.

    Article  CAS  PubMed  Google Scholar 

  111. Choi SH, Kim SY, An JJ, Lee SH, Kim DW, Ryu HJ, et al. Human PEP-1-ribosomal protein S3 protects against UV-induced skin cell death. FEBS Lett. 2006;580:6755–62.

    Article  CAS  PubMed  Google Scholar 

  112. Barba C, Mendez S, Roddick-Lanzilotta A, Kelly R, Parra JL, Coderch L. Wool peptide derivatives for hand care. J Cosmet Sci. 2007;58:99–107.

    CAS  PubMed  Google Scholar 

  113. Barba C, Mendez S, Roddick-Lanzilotta A, Kelly R, Parra JL, Coderch L. Cosmetic effectiveness of topically applied hydrolysed keratin peptides and lipids derived from wool. Skin Res Technol. 2008;14:243–8.

    Article  CAS  PubMed  Google Scholar 

  114. dal Farra C, Oberto G, Berghi A, Domloge N. An anti-aging effect on the lips and skin observed in in vivo studies on a new fibronectin-like peptide. J Am Acad Dermatol. 2007;56:AB88.

    Article  Google Scholar 

  115. Centerchem, Glycine soja (soybean) protein, Barcelona.

    Google Scholar 

  116. Sudel KM, Venzke K, Mielke H, Breitenbach U, Mundt C, Jaspers S, et al. Novel aspects of intrinsic and extrinsic aging of human skin: beneficial effects of soy extract. Photochem Photobiol. 2005;81:581–7.

    Article  PubMed  Google Scholar 

  117. Andre-Frei V, Perrier E, Augustin C, Damour O, Bordat P, Schumann K, et al. A comparison of biological activities of a new soya biopeptide studied in an in vitro skin equivalent model and human volunteers. Int J Cosmet Sci. 1999;21:299–311.

    Article  CAS  PubMed  Google Scholar 

  118. Sim GS, Lee DH, Kim JH, An SK, Choe TB, Kwon TJ, et al. Black rice (Oryza sativa L. var. japonica) hydrolyzed peptides induce expression of hyaluronan synthase 2 gene in hacat keratinocytes. J Microbiol Biotechnol. 2007;17:271–9.

    CAS  PubMed  Google Scholar 

  119. Centerchem, Eyeseryl®, Barcelona.

    Google Scholar 

  120. Padamwar MN, Pawar AP, Daithankar AV, Mahadik KR. Silk sericin as a moisturizer: an in vivo study. J Cosmet Dermatol. 2005;4:250–7.

    Article  PubMed  Google Scholar 

  121. Daithankar AV, Padamwar MN, Pisal SS, Paradkar AR, Mahadik KR. Moisturizing efficiency of silk protein hydrolysate: silk fibroin. Indian J Biotechnol. 2005;4:115–21.

    CAS  Google Scholar 

  122. Zhaorigetu S, Yanaka N, Sasaki M, Watanabe H, Kato N. Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse. J Photochem Photobiol B Biol. 2003;71:11–7.

    Article  CAS  Google Scholar 

  123. Foran PG, Mohammed N, Lisk GO, Nagwaney S, Lawrence GW, Johnson E, et al. Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A: basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem. 2003;278:1363–71.

    Article  CAS  PubMed  Google Scholar 

  124. Centerchem, Argireline®, Barcelona.

    Google Scholar 

  125. Gutierrez LM, Viniegra S, Rueda J, Ferrer-Montiel AV, Canaves JM, Montal M. A peptide that mimics the C-terminal sequence of SNAP-25 inhibits secretory vesicle docking in chromaffin cells. J Biol Chem. 1997;272:2634–9.

    Article  CAS  PubMed  Google Scholar 

  126. Gutierrez LM, Canaves JM, Ferrer-Montiel AV, Reig JA, Montal M, Viniegra S. A peptide that mimics the carboxy-terminal domain of SNAP-25 blocks Ca2+-dependent exocytosis in chromaffin cells. FEBS Lett. 1995;372:39–43.

    Article  CAS  PubMed  Google Scholar 

  127. Centerchem, Leuphasyl®, Barcelona.

    Google Scholar 

  128. Lipotec, SNAP-8, Barcelona.

    Google Scholar 

  129. Centerchem, Vialox®, Basel.

    Google Scholar 

  130. Snyder EL, Dowdy SF. Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids in vivo. Expert Opin Drug Deliv. 2005;2:43–51.

    Article  CAS  PubMed  Google Scholar 

  131. Hou YW, Chan MH, Hsu HR, Liu BR, Chen CP, Chen HH, et al. Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides. Exp Dermatol. 2007;16:999–1006.

    Article  CAS  PubMed  Google Scholar 

  132. Morris MC, Depollier J, Mery J, Heitz F, Divita G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. 2001;19:1173–6.

    Article  CAS  PubMed  Google Scholar 

  133. Appa Y, Stephens T, Barkovic S, Finkey MB. A clinical evaluation of a copper-peptide-containing liquid foundation and cream concealer designed for improving skin condition. American Academy of Dermatology 60th Annual Meeting; 2002; New Orleans. p. 28.

    Google Scholar 

  134. Leyden JJ, Stevens T, Finkey MB, Barkovic S. Skin care benefits of copper-peptide containing facial cream. American Academy of Dermatology 60th Annual Meeting; 2002; New Orleans.

    Google Scholar 

  135. Finkey MB, Appa Y, Bhandarkar S. Copper peptide and skin. In: Elsner P, Maibach HI, editors. Cosmeceuticals and active cosmetics. New York: Marcel Dekker; 2005. p. 549–64.

    Google Scholar 

  136. Leyden JJ, Stevens T, Finkey MB, Barkovic S. Skin care benefits of copper peptide containing eye creams. American Academy of Dermatology 60th Annual Meeting; 2002; New Orleans.

    Google Scholar 

  137. Hussain M, Goldberg DJ. Topical manganese peptide in the treatment of photodamaged skin. J Cosmet Laser Ther. 2007;9:232–6.

    Article  PubMed  Google Scholar 

  138. Naderi-Hachtroudi L, Peters T, Brenneisen P, Meewes C, Hommel C, Razi-Wolf Z, et al. Induction of manganese superoxide dismutase in human dermal fibroblasts: a UV-B-mediated paracrine mechanism with the release of epidermal interleukin 1(alpha), interleukin 1(beta), and tumor necrosis factor (alpha). Arch Dermatol. 2002;138:1473–9.

    Article  CAS  PubMed  Google Scholar 

  139. Parat MO, Richard MJ, Leccia MT, Amblard P, Favier A, Beani JC. Does manganese protect cultured human skin fibroblasts against oxidative injury by UVA, dithranol and hydrogen peroxide? Free Radic Res. 1995;23:339–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzam Gorouhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Gorouhi, F., Maibach, H.I. (2017). Topical Peptides and Proteins for Aging Skin. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_101

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_101

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics