Acko, B., Godina, A.: Verification of the conventional measuring uncertainty evaluation model with Monte Carlo simulation. Int. J. Simul. Model. 4, 76–84 (2005)
CrossRef
Google Scholar
Alkhatib, H., Kutterer, H.: Estimation of measurement uncertainty of kinematic TLS observation process by means of Monte-Carlo methods. J. Appl. Geodesy 7, 125–133 (2013)
CrossRef
Google Scholar
Alkhatib, H., Neumann, I., Kutterer, H.: Uncertainty modeling of random and systematic errors by means of Monte Carlo and fuzzy techniques. J. Appl. Geodesy 3, 67–79 (2009)
CrossRef
Google Scholar
Alkhatib, H., Schuh, W.D.: Integration of the Monte Carlo covariance estimation strategy into tailored solution procedures for large-scale least squares problems. J. Geodesy 81, 53–66 (2007)
CrossRef
Google Scholar
Arnold, S.: The Theory of Linear Models and Multivariate Analysis. Wiley, New York (1981)
Google Scholar
Baarda, W.: Statistical Concepts in Geodesy. Publications on Geodesy, vol. 2, Nr. 4. Netherlands Geodetic Commission, Delft (1967)
Google Scholar
Baarda, W.: A Testing Procedure for Use in Geodetic Networks. Publications on Geodesy, vol. 2, Nr. 5. Netherlands Geodetic Commission, Delft (1968)
Google Scholar
Baselga, S.: Nonexistence of rigorous tests for multiple outlier detection in least-squares adjustment. J. Surv. Eng. 137, 109–112 (2011)
CrossRef
Google Scholar
Beckman, R., Cook, R.: Outlier…. S. Technometrics 25, 119–149 (1983)
Google Scholar
Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. B 36, 192–236 (1974)
Google Scholar
Box, G., Muller, M.: A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)
CrossRef
Google Scholar
Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)
Google Scholar
Dagpunar, J.: Principles of Random Variate Generation. Clarendon Press, Oxford (1988)
Google Scholar
Devroye, L.: Non-Uniform Random Variate Generation. Springer, Berlin (1986)
CrossRef
Google Scholar
Dietrich, C.: Uncertainty, Calibration and Probability, 2nd edn. Taylor & Francis, Boca Raton (1991)
Google Scholar
van Dorp, J., Kotz, S.: Generalized trapezoidal distributions. Metrika 58, 85–97 (2003)
CrossRef
Google Scholar
Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208 (2000)
CrossRef
Google Scholar
Falk, M.: A simple approach to the generation of uniformly distributed random variables with prescribed correlations. Commun. Stat. Simul. 28, 785–791 (1999)
CrossRef
Google Scholar
Gaida, W., Koch, K.R.: Solving the cumulative distribution function of the noncentral F-distribution for the noncentrality parameter. Sci. Bull. Stanislaw Staszic Univ. Min. Metall. Geodesy b.90(1024), 35–44 (1985)
Google Scholar
Gelfand, A., Smith, A.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990)
CrossRef
Google Scholar
Gelman, A., Carlin, J., Stern, H., Rubin, D.: Bayesian Data Analysis, 2nd edn. Chapman and Hall, Boca Raton (2004)
Google Scholar
Geman, D., Geman, S., Graffigne, C.: Locating texture and object boundaries. In: Devijver, P., Kittler, J. (eds.) Pattern Recognition Theory and Applications, pp. 165–177. Springer, Berlin (1987)
CrossRef
Google Scholar
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 6, 721–741 (1984)
CrossRef
Google Scholar
Geman, S., McClure, D.: Statistical methods for tomographic image reconstruction. Bull. Int. Stat. Inst. 52, 5–21 (1987)
Google Scholar
Gentle, J.: Random Number Generation and Monte Carlo Methods, 2nd edn. Springer, Berlin (2003)
Google Scholar
Gilks, W.: Full conditional distributions. In: Gilks, W., Richardson, S., Spiegelhalter, D. (eds.) Markov Chain Monte Carlo in Practice, pp. 75–88. Chapman and Hall, London (1996)
Google Scholar
Golub, G., van Loan, C.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1984)
Google Scholar
Gordon, N., Salmond, D.: Bayesian state estimation for tracking and guidance using the bootstrap filter. J. Guid. Control. Dyn. 18, 1434–1443 (1995)
CrossRef
Google Scholar
Gundlich, B., Koch, K.R., Kusche, J.: Gibbs sampler for computing and propagating large covariance matrices. J. Geod. 77, 514–528 (2003)
CrossRef
Google Scholar
Gundlich, B., Kusche, J.: Monte Carlo integration for quasi–linear models. In: Xu, P., Liu, J., Dermanis, A. (eds.) VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, pp. 337–344. Springer, Berlin/Heidelberg (2008)
CrossRef
Google Scholar
Guo, J.F., Ou, J.K., Yuan, Y.B.: Reliability analysis for a robust M-estimator. J. Surv. Eng. 137, 9–13 (2011)
CrossRef
Google Scholar
Hennes, M.: Konkurrierende Genauigkeitsmaße – Potential und Schwächen aus der Sicht des Anwenders. Allgemeine Vermessungs-Nachrichten 114, 136–146 (2007)
Google Scholar
Huber, P.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)
CrossRef
Google Scholar
ISO: Guide to the Expression of Uncertainty in Measurement. International Organization for Standardization, Geneve (1995)
Google Scholar
JCGM: Evaluation of measurement data–supplement 2 to the “Guide to the Expression of Uncertainty in Measurement”–Extension to any number of output quantities. JCGM 102:2011. Joint Committee for Guides in Metrology. (2011). www.bipm.org/en/publications/guides
Kacker, R., Jones, A.: On use of Bayesian statistics to make the guide to the expression of uncertainty in measurement consistent. Metrologia 40, 235–248 (2003)
CrossRef
Google Scholar
Kargoll, B.: On the Theory and Application of Model Misspecification Tests in Geodesy. Universität Bonn, Institut für Geodäsie und Geoinformation, Schriftenreihe 8, Bonn (2008)
Google Scholar
Knight, N., Wang, J., Rizos, C.: Generalised measures of reliability for multiple outliers. J. Geod. 84, 625–635 (2010)
CrossRef
Google Scholar
Koch, K.R.: Ausreißertests und Zuverlässigkeitsmaße. Vermessungswesen und Raumordnung 45, 400–411 (1983)
Google Scholar
Koch, K.R.: Parameter Estimation and Hypothesis Testing in Linear Models, 2nd edn. Springer, Berlin (1999)
CrossRef
Google Scholar
Koch, K.R.: Monte-Carlo-Simulation für Regularisierungsparameter. ZfV–Z Geodäsie, Geoinformation und Landmanagement 127, 305–309 (2002)
Google Scholar
Koch, K.R.: Determining the maximum degree of harmonic coefficients in geopotential models by Monte Carlo methods. Studia Geophysica et Geodaetica 49, 259–275 (2005)
CrossRef
Google Scholar
Koch, K.R.: Gibbs sampler by sampling-importance-resampling. J. Geod. 81, 581–591 (2007)
CrossRef
Google Scholar
Koch, K.R.: Introduction to Bayesian Statistics, 2nd edn. Springer, Berlin (2007)
Google Scholar
Koch, K.R.: Determining uncertainties of correlated measurements by Monte Carlo simulations applied to laserscanning. J. Appl. Geod. 2, 139–147 (2008)
Google Scholar
Koch, K.R.: Evaluation of uncertainties in measurements by Monte Carlo simulations with an application for laserscanning. J. Appl. Geod. 2, 67–77 (2008)
Google Scholar
Koch, K.R.: Minimal detectable outliers as measures of reliability. J. Geod. 89, 483–490 (2015)
CrossRef
Google Scholar
Koch, K.R.: Bayesian statistics and Monte Carlo methods. J. Geod. Sci. 8, 18–29 (2018)
CrossRef
Google Scholar
Koch, K.R.: Monte Carlo methods. GEM–Int. J. Geomath. 9(1), 117–143 (2018)
CrossRef
Google Scholar
Koch, K.R., Brockmann, J.: Systematic effects in laser scanning and visualization by confidence regions. J. Appl. Geod. 10(4), 247–257 (2016)
Google Scholar
Koch, K.R., Kargoll, B.: Outlier detection by the EM algorithm for laser scanning in rectangular and polar coordinate systems. J. Appl. Geod. 9, 162–173 (2015)
Google Scholar
Koch, K.R., Kusche, J., Boxhammer, C., Gundlich, B.: Parallel Gibbs sampling for computing and propagating large covariance matrices. ZfV–Z Geodäsie, Geoinformation und Landmanagement 129, 32–42 (2004)
Google Scholar
Koch, K.R., Schmidt, M.: Deterministische und stochastische Signale. Dümmler, Bonn (1994). http://skylab.itg.uni-bonn.de/koch/00_textbooks/Determ_u_stock_Signale.pdf
Google Scholar
Kok, J.: Statistical analysis of deformation problems using Baarda’s testing procedures in: “Forty Years of Thought”. Anniversary Volume Occasion of Prof. Baarda’s 65th Birthday 2, 470–488 (1982). Delft
Google Scholar
Kok, J.: On data snooping and multiple outlier testing. In: NOAA Technical Report NOS NGS 30. US Department of Commerce, National Geodetic Survey, Rockville (1984)
Google Scholar
Lehmann, R.: Improved critical values for extreme normalized and studentized residuals in Gauss-Markov models. J. Geod. 86, 1137–1146 (2012)
CrossRef
Google Scholar
Lehmann, R.: On the formulation of the alternative hypothesis for geodetic outlier detection. J. Geod. 87, 373–386 (2013)
CrossRef
Google Scholar
Leonard, T., Hsu, J.: Bayesian Methods. Cambridge University Press, Cambridge (1999)
Google Scholar
Liu, J.: Monte Carlo Strategies in Scientific Computing. Springer, Berlin (2001)
Google Scholar
Marsaglia, G., Bray, T.: A convenient method for generating normal variables. SIAM Rev. 6, 260–264 (1964)
CrossRef
Google Scholar
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)
CrossRef
Google Scholar
Nowel, K.: Application of Monte Carlo method to statistical testing in deformation analysis based on robust M-estimation. Surv. Rev. 48(348), 212–223 (2016)
CrossRef
Google Scholar
O’Hagan, A.: Bayesian Inference, Kendall’s Advanced Theory of Statistics, vol. 2B. Wiley, New York (1994)
Google Scholar
Pope, A.: The statistics of residuals and the detection of outliers. In: NOAA Technical Report NOS65 NGS1. US Department of Commerce, National Geodetic Survey, Rockville (1976)
Google Scholar
Proszynski, W.: Another approach to reliability measures for systems with correlated observations. J. Geod. 84, 547–556 (2010)
CrossRef
Google Scholar
Roberts, G., Smith, A.: Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stoch. Process. Appl. 49, 207–216 (1994)
CrossRef
Google Scholar
Rubin, D.: Using the SIR algorithm to simulate posterior distributions. In: Bernardo, J., DeGroot, M., Lindley, D., Smith, A. (eds.) Bayesian Statistics, vol. 3, pp. 395–402. Oxford University Press, Oxford (1988)
Google Scholar
Rubinstein, R.: Simulation and the Monte Carlo Method. Wiley, New York (1981)
CrossRef
Google Scholar
Schader, M., Schmid, F.: Distribution function and percentage points for the central and noncentral F-distribution. Stat. Pap. 27, 67–74 (1986)
Google Scholar
Siebert, B., Sommer, K.D.: Weiterentwicklung des GUM und Monte-Carlo-Techniken. tm–Technisches Messen 71, 67–80 (2004)
Google Scholar
Smith, A., Gelfand, A.: Bayesian statistics without tears: a sampling-resampling perspective. Am. Stat. 46, 84–88 (1992)
Google Scholar
Smith, A., Roberts, G.: Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo methods. J. R. Stat. Soc. B 55, 3–23 (1993)
Google Scholar
Staff of the Geodetic Computing Center, S.: The Delft approach for the design and computation of geodetic networks. In: “Forty Years of Thought”. Anniversary Volume on the Occasion of Prof. Baarda’s 65th Birthday vol. 1, pp. 202–274. Delft (1982)
Google Scholar
Teunissen, P.: Adjusting and testing with the models of the affine and similarity transformation. Manuscr. Geodaet. 11, 214–225 (1986)
Google Scholar
Teunissen, P.: Testing theory; An introduction. MGP, Department of Mathematical Geodesy and Positioning, Delft University of Technology, Delft (2000)
Google Scholar
Teunissen, P., de Bakker, P.: Single-receiver single-channel multi-frequency GNSS integrity: outliers, slips, and ionospheric disturbances. J. Geod. 87, 161–177 (2013)
CrossRef
Google Scholar
Wilks, S.: Mathematical Statistics. Wiley, New York (1962)
Google Scholar
Xu, P.: Random simulation and GPS decorrelation. J. Geod. 75, 408–423 (2001)
CrossRef
Google Scholar