Skip to main content

Einsatz von Stoßwellen in der Medizin

  • Living reference work entry
  • First Online:
  • 806 Accesses

Part of the book series: Springer Reference Technik ((SRT))

Zusammenfassung

Im Jahr 1980 wurde der erste Nierensteinpatient mit einer extrakorporalen Stoßwellenlithotripsie (ESWL) minimal invasiv von seinem Steinleiden befreit. Nach den ersten Behandlungen von ca. 200 Patienten konnte 1983 das erste Seriengerät der Öffentlichkeit übergeben werden. Von der ursprünglich auf Nierensteine beschränkten Anwendung wurde das Verfahren auf Steine im gesamten Harntrakt sowie auf andere Gebiete kontinuierlich erweitert. Heute ist die extrakorporale Stoßwellentherapie (ESWT) zur Behandlung von Weichteilschmerzen, bei Plantarfasziitis und Epicondilytis humeri radialis zugelassen. In neuerer Zeit wird der Einsatz von Stoßwellen zur Anwendung biotechnischer Heilmittel mit aussichtsreichen Vorergebnissen erprobt. Auch Patienten mit Angina pectoris profitieren von Druckpulstherapien. Dieses Kapitel gibt einen detaillierten Überblick über die technischen Grundlagen der ESWL und der ESWT sowie die klinische Effizienz von Lithotriptoren inkl. Nebenwirkungen und Sicherheit.

Die Originalversion dieses Kapitels wurde revidiert: Der Herausgebername wurde korrigiert.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    Beschränkungen sind: ein bis maximal drei Steine, Steinmasse entsprechend max. 3 cm3, Motilität der Gallenblase gesichert. Weitere Indikationen sind Gallengangsteine sowie Pankreassteine, insbesondere bei multimorbiden Risikopatienten. Üblich ist eine begleitende Behandlung mit Litholysemedikamenten.

  2. 2.

    Mit speziellen Unterdruckreflektoren wurden schon −50 MPa gemessen.

  3. 3.

    Die Fokusbreite wird auch als FWHM oder auch −6-dB-Breite bezeichnet.

  4. 4.

    Dies ist bei den sphärisch abstrahlenden Funkenquellen der umfasste Raumwinkel.

  5. 5.

    Synthetischer Gips, gemischt mit Glashohlkugeln zur Homogenisierung.

  6. 6.

    Andere Nebenwirkungen der Lithotripsie sind eher biologisch bedingt, z. B. durch Obstruktionen der Harnableitenden Wege.

  7. 7.

    10,9 μs Dauer von P- und 5,5 μs Dauer von P+, bei Variation zwischen 1,6 und 4 MPa (Miller 1995).

  8. 8.

    HM 3 hat klinische Erfolgsraten EQA bis 0,67. Das „Niederdruckgerät“ erreicht einen EQA von bis zu 0,67 gegenüber einem EQA von 0,71 für das „Hochdruckgerät“ (Forssmann et al. 2002; Niersteenverbrijzeling-eng 2005; Lingeman 2008).

  9. 9.

    Die Idee an sich wurde schon vor drei Jahrzehnten umgesetzt, bereits beim „Wasserbad-freien“ Nachfolger des HM 3 war eine Videokamera eingebaut.

Literatur

  • Assmus, Walter, Seeger, Leistner, Steiner, Ziegler, Lutz, Khaled, Klotsche, Tonn, Dimmeler, Zeiher (2013) Effect of shock wave-facilitated intracoronary cell therapy on LVEF in patients with chronic heart failure – the CELLWAVE randomized clinical trial. JAMA 309(15):1622–1631. doi:10.1001/jama.2013.3527

    Google Scholar 

  • AUA (2009) Current perspective on adverse effects in shock wave lithotripsy – white paper. https://www.auanet.org/common/pdf/education/clinical-guidance/Shock-Wave-Therapy-WP.pdf. Zugegriffen am 28.3.2015

  • Bergsdorf, Thüroff, Chaussy (2005) The isolated perfused kidney: an in vitro test system for evaluation of renal tissue by high-energy shockwave sources. J Endourol 19:883–888

    Google Scholar 

  • Bergsdorf, Chaussy, Thüroff (2008) Energy coupling in extracorporeal shock wave lithotripsy – the impact of coupling quality on disintegration efficacy. J Endourol 22(Suppl):A161

    Google Scholar 

  • Berlinicke, Schenneten (1951) Vorläufige Mitteilung d. I. Med. Univ. Klin. d. Charite Berlin.Klin Wschi 21/22:390

    Google Scholar 

  • Bohris C (2010) Quality of coupling in ESWL significantly affects the disintegration capability – how to achieve good coupling with ultrasound gel. In: Chaussy, Haupt, Jocham, Köhrmann (Hrsg) Therapeutic energy applications in urology II. Thieme, Stuttgart, S 61–64

    Google Scholar 

  • Bohris, Bayer, Lechner (2003) Hit/Miss monitoring of ESWL by spectral Doppler ultrasound. Ultrasound Med Biol 29(5):705–712

    Google Scholar 

  • Bohris, Jensen, Bayer, Liong (2006) A new integrated ultrasound system for shockwave lithotripsy. J Endourol 20(11):863

    Google Scholar 

  • Bohris, Bayer, Gumpinger (2010) Ultrasound monitoring of kidney stone extracorporeal shockwave lithotripsy with an external transducer: does fatty tissue cause image distortions that affect stone comminution? J Endourol 24(1):81

    Google Scholar 

  • Carlson, Boysen, Banner, Gravenstein (1986) Stone movement during ESWL. In: Gravenstein P (Hrsg) Extracorporeal shock-wave lithotripsy for renal stone disease. Butterworths: ESWL for Renal Stone Disease, Boston, S 77–85

    Google Scholar 

  • Cathignol, Chapelon, Mestas et al (1989) Minimization of the negative pressure in piezoelectric shock wave. In: Ultrasonics Int Conf Proc, S 1142 ff

    Google Scholar 

  • Cathignol, Mestas, Gomez, Lenz (1991) Influence of water conductivity on the efficiency and the reproducibility of electrohydraulic shock wave generation. Ultrasound Med Biol 17(8):8, 19–828

    Google Scholar 

  • Cathignol, Tavakkoli, Arefiev (1998) Influence of the pressure time waveform on the transient cavitation effect. In: 135th ASA conf proc, Seattle, S 2799 f

    Google Scholar 

  • Chapelon, Cathignol, Cain et al (2000) New piezoelectric transducers for therapeutic ultrasound. Ultrasound Med Biol 26(1):153–159

    Google Scholar 

  • Chaussy (1980) Berührungsfreie Nierensteinzertrümmerung durch extrakorporal erzeugte, fokussierte Stoßwellen. S. Karger Verlag, Basel

    Google Scholar 

  • Chaussy, Schmiedt, Jocham (1982) In: Chaussy (Hrsg) Extracorporeal shock wave lithotripsy: new aspects in the treatment of kidney stone disease. S. Karger, Basel

    Google Scholar 

  • Chaussy, Tailly, Forssmann, Bohris, Lutz, Tailly-Cusse, Tailly (2013) Extracorporeal shock wave lithotripsy in a nutshell, 2. Aufl. Dornier MedTech Europe GmbH

    Google Scholar 

  • Chitnis, Cleveland (2006) Acoustic and cavitation fields of shock wave therapy devices. AIP Conf Proc 829:440. doi:10.1063/1.2205513

    Google Scholar 

  • Chuong, Zhong, Preminger (1992) A comparison of stone damage caused by different modes of shock wave delivery. J Urol 148:200

    Google Scholar 

  • Church (1999) On nucleation theory. DKE 821.3 Document 55/99, VDE, Frankfurt

    Google Scholar 

  • Cleveland, Bailey, Crum et al (1998) Effect of overpressure on dissolution and cavitation of bubbles stabilized on a metal surface. In: 135th ASA Conf Proc, S 2499–2500

    Google Scholar 

  • Coats (1956) J Urol 75(5):865–876

    Google Scholar 

  • Coleman, Saunders (1990) A comparison of PVDF hydrophone measurements in the acoustic field of a shock wave source. In: Extra- und Intrakorporale Lithotripsie bei Harn-, Gallen-, Pankreas und Speichelsteinen. Thieme, Stuttgart, S 15–22

    Google Scholar 

  • Coleman, Codama, Choi et al (1995) The cavitation threshold of human tissue exposed to 0,2 MHz pulsed ultrasound: preliminary measurements based on a study of clinical lithotripsy. Ultrasound Med Biol 21:405–417

    Google Scholar 

  • Coleman, Choi, Saunders (1996) Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy. Ultrasound Med Biol 22(8):1079–1087

    Google Scholar 

  • Coleman, Draguioti, Tiptaf et al (1998) Acoustic performance and clinical use of a fiberoptic hydrophone. Ultrasound Med Biol 24(1):143–151

    Google Scholar 

  • Coussios, Roy (2008) Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu Rev Fluid Mech 40:395–420

    Google Scholar 

  • Crum, Bailey, Kaczkowski et al (1998) Therapeutic ultrasound: a promising future in clinical medicine. In: 135th ASA Conf Proc, Seattle, S 7, 19 f

    Google Scholar 

  • Dahmen, Meiss, Nam Skruodies (1992) Extrakorporale Stoßwellentherapie (ESWT) im knochennahen Weichteilbereich der Schulter. Extr Orthop 11:25

    Google Scholar 

  • Delhaye, Vandermeeren, Baize, Cremer (1992) Extracorporeal shock wave lithotripsy of pancratic calculi. Gastroenterology 102:610–620

    Google Scholar 

  • Delius (1997) Minimal static excess pressure minimizes the effect of extracorporeal shock waves on cells and reduces it on gallstones. Ultrasound Med Biol 23:611–617

    Google Scholar 

  • Delius, Adams (1999) Shock wave permeabilization with ribosome inactivationg proteins: a new approach to tumor therapy. Cancer Res 59:5227–5232

    Google Scholar 

  • Delius, Gambihler (1992) Sonographic imaging of extracorporeal shockwave effects in the liver and gallbladder of dogs. Digestion 52:55–60

    Google Scholar 

  • Delius, Enders, Heine et al (1987) Biological effects of shock waves: lung hemorrhage by shock waves in dogs – pressure dependence. Ultrasound Med Biol 13:61–67

    Google Scholar 

  • Delius, Jordan, Eizenhöfer et al (1988) Biological effects of shock waves: kidney haemorrhage by shock waves in dogs – administration rate dependence. Ultrasound Med Biol 14:689–694

    Google Scholar 

  • Delius, Denk, Berding et al (1990) Biological effects of shock waves: cavitation by shock waves in piglet liver. Ultrasound Med Biol 16:467–472

    Google Scholar 

  • Delius, Ueberle, Gambihler (1994) The destruction of gall stones and model plaster stones by extracorporeal shock waves. Ultrasound Med Biol 20(3):251–258

    Google Scholar 

  • Delius, Draenert et al (1995a) Biological effects of shock waves: in vivo effect of high energy pulses on rabbit bone. Ultrasound Med Biol 21(9):1219–1225

    Google Scholar 

  • Delius, Hofschneider PH, Lauer U, Messmer K (1995b) Extracorporeal shock waves for gene therapy? Lancet 345:1377

    Google Scholar 

  • Delius, Ueberle, Eisenmenger (1998) Extracorporeal shock waves act by shock wave – gas bubble interaction. Ultrasound Med Biol 24(7):1055–1059

    Google Scholar 

  • DGSL (1995) Deutsche Gesellschaft für Stoßwellenlithotripsie: Konsensus-Workshop 4 der deutschen Gesellschaft für Stoßwellenlithotripsie. Die Stoßwelle. Attempto-Verlag, Tübingen

    Google Scholar 

  • DIGEST http://www.digest-ev.de

  • Donaldson, Lardas, Scrimgeour, Stewart, MacLennan, Lam, McClinton (2015) Systematic review and meta-analysis of the clinical effectiveness of shock wave lithotripsy, retrograde intrarenal surgery, and percutaneous nephrolithotomy for lower-pole renal stones. Eur Urol 67:612–616. doi:10.1016/j.eururo.2014.09.054

    Google Scholar 

  • Drach, Dretler, Fair et al (1986) Report of the United States cooperative study of extracorporeal shock wave lithotripsy. J Urol 135:1127–1133

    Google Scholar 

  • Dreyer (2006) Systemmodellierung piezoelektrischer Sender zur Erzeugung hochintensiver Ultraschallimpulse für die medizinische Therapie. Forschungsberichte aus dem Institut für Höchstfrequenztechnik und Elektronik, Bd 49. Karlsruhe. ISSN 0942-2935

    Google Scholar 

  • Dreyer, Riedlinger (2001) Modeling of piezoceramic composite transducer structures generating strong sound pulses in therapy. In: IEEE Ultrason Symp Proc, S 1027–1030

    Google Scholar 

  • Dreyer, Riedlinger, Steiger (1998) Experiments on the relation of shock wave parameters to stone disintegration. In: 135th ASA Conf Proc, S 2811–2812

    Google Scholar 

  • Dreyer, Krauss, Bauer, Riedlinger (2000) Investigations of compact self focusing transducers using stacked piezoelectric elements for strong sound pulses in therapy. In: IEEE Ultrason Symp Proc, S 1239–1242

    Google Scholar 

  • EAU (2015) Guidelines on urolithiasis, C. Türk (Chair), T. Knoll (Vice-chair), A. Petrik, K. Sarica, A. Skolarikos, M. Straub, C. Seitz. http://uroweb.org/guideline/urolithiasis/#. Zugegriffen am 28.3.2015

    Google Scholar 

  • Eisenmenger (1962) Elektromagnetische Erzeugung von ebenen Druckstössen in Flüssigkeiten. Akustische Beihefte, Acustica 1:185–202

    Google Scholar 

  • Eisenmenger (2001) The mechanisms of stone fragmentation in ESWL. Ultrasound Med Biol 27(5):683–693

    Google Scholar 

  • Eisenmenger (2003) Die Physik der akustischen Nierensteinzertrümmerung und neue klinische Resultate. Vortrag anläßlich der Verleihung der Hermann von Helmholtzmedaille bei der DAGA Tagung Aachen, Proceedings. DPG Verlag, Bad Honnef

    Google Scholar 

  • Evan, Willis, Connors et al (1998) Separation of cavitation and renal injury induced by ahock wave lithotripsy (SWL) from SWL-induced impairment of renal hemodynamics. In: 135th ASA Conf Proc, Seattle, S 2487 f

    Google Scholar 

  • Evan, McAteer, Connors, Blomgren, Lingeman (2007a) Renal injury is significantly reduced by slowing the rate of shock wave delivery. BJU Int 100:624–627

    Google Scholar 

  • Evan, McAteer, Connors, Pishchalnikov, Handa, Blomgren, Willis, Williams, Lingeman, Gao (2007b) Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. BJU Int 101:382–388

    Google Scholar 

  • FDA (1991) Draft of suggested information for reporting extracorporeal shock wave lithotripsy device shock wave measurements. FDA, Rockville

    Google Scholar 

  • FDA (2002-1) http://www.accessdata.fda.gov/cdrh_docs/pdf/P000048b.pdf

  • FDA (2002-2) http://www.accessdata.fda.gov/cdrh_docs/pdf/P010039b.pdf

  • Fedele, Coleman, Leighton, White, Hurrell (2004) A new sensor for detecting and characterising acoustic cavitation in vivo during ESWL. Proc Inst Acoust 26:422–432

    Google Scholar 

  • Feigl, Waldfahrer et al (1995) Destruction of normal and malignant human cells by high-energy pulsed ultrasound. In: Proc World Congr Ultrason, S 1087–1090

    Google Scholar 

  • Filipiczinsky (1990) Capacitance hydrophone for pressure determination in lithotripsy. Ultrasound Med Biol 16:157–165

    Google Scholar 

  • Fink (1999) Time-reversed acoustics. Sci Am 281:91–97

    Google Scholar 

  • Folbert, Hassler (1990) Die Wertigkeit von Inline-und Outline Ultraschall-Lokalisation in der extrakorporalen Stoßwellen-Lithotripsie. Z Urol Poster I:46

    Google Scholar 

  • Forssmann, Ueberle, Bohris (2002) Towards a new EMSE generation. J Endourol 16(Suppl 2):18–21

    Google Scholar 

  • Gambihler, Delius (1992) Influence of dissolved and free gases on iodine release and cell killing by shock waves in vitro. Ultrasound Med Biol 18(6/7):617–621

    Google Scholar 

  • Gerber, Studer, Danuser (2005) Is newer always better? A comparative study of 3 lithotriptor generations. J Urol 173(6):2013–2016

    Google Scholar 

  • Gerdesmeier, Diehl, Gollwitzer, Wagner (2004) Radiale extrakorporale Stosswellentherapie. J Mineralstoffwechsel 11(4):36–39

    Google Scholar 

  • Granz, Köhler (1992) What makes a shock wave efficient in lithotripsy? J Stone Dis 4(2):123–125

    Google Scholar 

  • Granz, Nanke (2005) The light spot hydrophone – LSHD: a new level of precise ultrasonic shock wave measurement. In: Therapeutic energy applications in urology. Standards and recent developments. Thieme, Stuttgart

    Google Scholar 

  • Granz, Nanke, Fehre, Pfister, Engelbrecht (2004) Light spot hydrophone, innovation in lithotripsy. Med Solut 86–87

    Google Scholar 

  • Gutersohn (2000) Caspari Shock waves upregulate vascular endothelial growth factor m-RNA in human umbilical vascular endothelial cells. Circulation 102(Suppl):18

    Google Scholar 

  • Haake, Boddecker, Decker et al (2002) Side-effects of extracorporeal shock wave therapy (ESWT) in the treatment of tennis elbow. Arch Orthop Trauma Surg 122(4):222–2228

    Google Scholar 

  • Harris (1989) Lithotripsy pulse measurement errors due to non-ideal hydrophone and amplifier frequency response. FDA, Rockville

    Google Scholar 

  • Haupt et al (1992) Influence of shock waves on fracture healing. Urology 39(6):529–532

    Google Scholar 

  • Heimbach, Munver, Zhong et al (2000) Acoustic and mechanical properties of artificial stones in comparison to natural stones. J Urol 164:537–544

    Google Scholar 

  • Hepp (1984) Überblick über die Entwicklung der Stoßwellenlithotripsie, September 1984. Dornier Medizintechnik, Friedrichshafen

    Google Scholar 

  • Hepp (1989) Work bond index values (persönliche Mitteilung)

    Google Scholar 

  • Herbertz (1988) Spontaneous Cavitation in Liquids Free of Nuclei. Fortschritte der Akustik DAGA 88. DPG Verlag, Bad Honnef, S 439–442

    Google Scholar 

  • Herbertz (1993) Physikalische Grenzwerte für die sichere medizinische Anwendung des Ultraschalls am Menschen. DAGA, Fortschritte der Akustik. DPG-Verlag, Bad Honnef

    Google Scholar 

  • Hirata, Kushida, Ohguri et al (1999) Hepatic subcapsular hematoma after extracorporeal shock wave lithotripsy (ESWL) for pancreatic stones. J Gastroenterol 34(6):713–716

    Google Scholar 

  • Holtum (1993) Eigenschaften und Desintegration von menschlichen Gallensteinen unter Stoßwelleneinwirkung. Dissertation, Stuttgart

    Google Scholar 

  • HPA (2010) Report of the health protection agency: safety of ultrasound and infrasound 1265028759369.pdf, S 36

    Google Scholar 

  • IEC (1998) Norm 61846 pressure pulse lithotripters. International Electrotechnical Commission, Genf

    Google Scholar 

  • IGEL (2014) Stoßwellentherapie beim Fersenschmerz. Erscheinungsdatum 29.9.2014: http://www.igel-monitor.de/print/IGeL_A_Z.php?action=abstract&id=85

  • Iloreta, Zhou, Sankin, Zhong, Szeri (2007) Assessment of shock wave lithotripters via cavitation potential. Phys Fluids 19:86103

    Google Scholar 

  • Iro, Nitsche, Schneider, Ell (1989) Extracorporeal shock wave lithotripsy of salivary gland stones. Lancet II:115

    Google Scholar 

  • Jocham (1998) Report at the meeting of the German Society for Shockwave Lithotripsy

    Google Scholar 

  • Joechle (1996) Kavitationsdosimetrie in hochenergetischen Ultraschallfeldern. Dissertation, Heidelberg

    Google Scholar 

  • Jordan, Bailey, Cleveland, Crum (1998) Detection of lithotripsy induced cavitation in blood. In: 135th ASA Conf Proc, Seattle, S 2809 f

    Google Scholar 

  • Kauleskar, Sukul et al (1993) The effect of high energy shock waves focused on cortical bone. J Surg Res 54:46–51

    Google Scholar 

  • Kedrinskii (1998) On a mechanism of target disintegration at shock wave focusing in ESWL. In: 135th ASA Conf Proc, S 2803–2804

    Google Scholar 

  • Keller, Riedlinger (1990) Vergleich der Kavitation bei verschiedenen Stoßwellengeneratoren. Biomed Tech Ergänzungsbd 35:233–234

    Google Scholar 

  • Kikuchi, Ito, Ito et al (2010) Double-blind and placebo-controlled study of the effectiveness and safety of extracorporeal cardiac shock wave therapy for severe angina pectoris. Circ J 74:589–591

    Google Scholar 

  • Koch, Grünewald (1989) Disintegration mechanisms of weak acoustic shock waves. In: Ultrasonics Int Conf Proc, S 1136–1141

    Google Scholar 

  • Koch, Molkenstruck, Reibold (1997) Shock-wave measurement using a calibrated interferometric fiber-tip sensor. Ultrasound Med Biol 23(8):1259–1266

    Google Scholar 

  • Köhrmann (2005) Comparison of lithotripters. In: Business briefing European pharmacotherapy. S 90–93

    Google Scholar 

  • Köhrmann, Kahmann, Weber et al (1993) Vergleich verschiedener Lithotripter anhand der Desintegrativen Effektivität (DE) und Desintegrativen Bandbreite (DB) am In-vitro-Steinmodell. Aktuelle Urol 24:320–325

    Google Scholar 

  • Köhrmann, Michel, Braun et al (1999) New interactive navigation system for integration of fluoroscopic and ultrasound imaging. J Endourol 13(Suppl 1):FP3-5 and 3–6, S A32

    Google Scholar 

  • Krasovitski, Frenkel, Kimmel (2011) Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. PNAS Early Edition. www.pnas.org/cgi/doi/10.1073/pnas.1015771108. Zugegriffen am 18.3.2015

  • Kuttruff (1988) Physik und Technik des Ultraschalls. Hirzel, Stuttgart

    Google Scholar 

  • Kuwahara, Kambe, Taguchi et al (1991) Initial experience using a new extracorporeal lithotripter with an anti-misshot control device. J Lithotr Stone Dis 3:141–146

    Google Scholar 

  • Lamport, Newman, Eichorn (1950) Fed Proc 9:73–74

    Google Scholar 

  • Lewin, Shafer (1991) Shock wave sensors: I. Requirements and design. J Lithotr Stone Dis 3(1):3–17

    Google Scholar 

  • Lingeman (2008) Stone technology: shock wave and intracorporeal lithotripsy. In: Denstedt, Khoury (Hrsg) Stone disease, 2nd international consultation on stone disease September 5, 2007, Editions 21. S 87–135

    Google Scholar 

  • Lingeman, McAteer, Gnessin, Evan (2009) Shock wave lithotripsy: advances in technology and technique. Nat Rev Urol 6:660–670

    Google Scholar 

  • Lobentanzer (1991) The concept of acoustic energy in lithotripsy. Dornier User Lett 7:22–26

    Google Scholar 

  • Loew (1993) Die Wirkung extrakorporal erzeugter hochenergetischer Stoßwellen auf den klinischen, röntgenologischen und histologischen Verlauf der Tendinosis calcarea der Schulter – eine prospektive Studie. In: Chaussy et al (Hrsg) Die Stoßwelle, Forschung und Klinik. Attempto, Tübingen, S 153–156

    Google Scholar 

  • Loew (1994) Die Wirkung extrakorporal erzeugter hochenergetischer Stoßwellen auf den klinischen, röntgenologischen und histologischen Verlauf der Tendinosis calcarea der Schulter. Habilitationsschrift, Heidelberg

    Google Scholar 

  • Logarakis, Jewett, Luymes, Honey (2000) Variation in clinical outcome following shockwave lithotripsy. J Urol 163:721–725

    Google Scholar 

  • Lohse-Busch, Kraemer, Reime (1997) The use of extracorporeal shock wave fronts for treatment of muscle dysfunction of various etiologies: an overview of first results, Chapter 14. In: Siebert, Buch (Hrsg) Extracorporeal shock waves in orthopedics. Springer, Berlin

    Google Scholar 

  • Lokhandwalla, Sturtevant (2000) Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys Med Biol 45(7):1923–1940

    Google Scholar 

  • Lovasz, Palfi, Romics (1999) Temperature elevation of stones during extracorporeal shock wave lithotripsy (ESWL) a hypothesis for possible cause of complications. In: Abstracts Tagung der Deutschen Urologischen Gesellschaft DGU, Abstract Session V2.5

    Google Scholar 

  • Maheshwari, Andankwar, Saple, Oswal (2002) Extracorporeal shock wave lithotripsy: complications and their prevention. www.bhj.org/journal/2002_4402_apr/endo_181.htm

  • McAteer, Evan, Williams, Lingeman (2009) Treatment protocols to reduce renal injury during shockwave lithotripsy. Curr Opin Urol 19:192–195

    Google Scholar 

  • Meier, Ueberle, Rupprecht (1998) Physikalische Parameter extrakorporaler Stoßwellen. Biomed Tech 43:269–274

    Google Scholar 

  • Michel, Erben, Köhrmann, Siegsmund, Alken (2002) Gentherapie des Prostatakarzinoms durch extrakorporale akustische Energie: Erste In-vitro- und In-vivo-Ergebnisse. Aktuelle Urol 33(3):213–218

    Google Scholar 

  • Michel, Ptaschnyk, Musial et al (2003) Objective and subjective changes in patients with Peyronie’s disease after management with shockwave therapy. J Endourol 17(1):41–44

    Google Scholar 

  • Miller (1995) Thresholds for hemorrhages in mouse skin and intestine induced by lithotripter shock waves. Ultrasound Med Biol 21(2):249–257

    Google Scholar 

  • Mishriki, Cohen, Baker et al (1993) Choosing a powerful lithotripter. Br J Urol 71:653–660

    Google Scholar 

  • Müller (1990) Dornier-Lithotripter im Vergleich: Vermessung der Stoßwellenfelder und Fragmentationswirkungen. Biomed Tech 35(11):250–262

    Google Scholar 

  • Müller, Platte (1985) Einsatz einer breitbandigen Piezodrucksonde auf PVDF-Basis zur Untersuchung konvergierender Stoßwellen in Wasser. Acustica 58

    Google Scholar 

  • Mulvaney (1953) J Urol 70(5):704–707

    Google Scholar 

  • Neuland, Duchstein (2012) Untersuchung der Wirkung Extrakorporaler Stosswellentherapie auf die Haut. Dissertation, Universität Hamburg

    Google Scholar 

  • Niersteenverbrijzeling-eng (2005) http://www.urologiena.com/subspecialisaties/niersteenverbrijzeling-eng.htm#Results

  • Nishida, Shimokawa, Oi et al (2004) Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation 110:2977

    Google Scholar 

  • Nitsche, Amelsberg, Berg, Fölsch (1994) Extracorporeal shock wave lithotripsy of gallstones in different biles and water in vitro. Digestion 55:175–178

    Google Scholar 

  • Ogden JA, Alvarez R, Levitt R, Cross GL, Marlow M (2001) Extracorporeal shock wave therapy for chronic plantar fasciitis. Clin Orthop 387:47–59

    Google Scholar 

  • Oi, Fukumoto, Ito, Uwatoku, Abe, Hizume, Shimokawa (2008) Extracorporeal shock wave therapy ameliorates hindlimb ischemia in rabbits. Tohoku J Exp Med 214(2):151–158

    Google Scholar 

  • Pace, Ghiculete, Harju, Honey (2005) Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol 174(2):595–599

    Google Scholar 

  • Parr, Pye, Ritchie, Tolley (1992) Mechanisms responsible for diminished fragmentation of uretreal calculi. J Urol 148:1079–1083

    Google Scholar 

  • Parsons, Cain, Abrams (2006) Pulsed cavitational ultrasound therapy for controlled tissue homogenization. Ultrasound Med Biol 32(1):115–129

    Google Scholar 

  • Perez, Chen, Matula, Karzova, Khokhlova (2013) Acoustic field characterization of the Duolith: measurements and modeling of a clinical shock wave therapy device. J Acoust Soc Am 134(2):1663–1674. doi:10.1121/1.4812885

    Google Scholar 

  • Pettrone F (2002) Randomized clinical study to evaluate the safety and efficiacy of the Siemens Sonocur ESWT System in treating patients with lateral epicondylitis (chronic tennis elbow). http://www.fda.gov/cdrh/pdf/P010039b.pdf

  • Philipp, Delius, Scheffcyk et al (1993) Interaction of lithotripter-generated shock waves with air bubbles. J Acoust Soc Am 5:2496–2509

    Google Scholar 

  • Pishchalnikov, McAteer, Williams, Pishchalnikova, vonDerHaar (2006a) Why stones break better at slow shock wave rate than at fast rate: in vitro study with a research electrohydraulic lithotripter. J Endourol 20:537–541

    Google Scholar 

  • Pishchalnikov, Neucks, Von der Haar, Pishchalnikova, Williams, McAteer (2006b) Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol 176:2706–2710

    Google Scholar 

  • Plaksin, Shoham, Kimmel (2014) Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation. Phys Rev X. doi:10.1103/PhysRevX.4.011004

    Google Scholar 

  • Pye, Parr, Munro, Anderson, McDicken (1991) Robust electromagnetic probe for the monitoring of lithotripter output. Ultrasound Med Biol 17(9):931–939

    Google Scholar 

  • Rad, Ueberle (2015) A multisport optical hydrophone for the singleshot field measurement of high power pressure pulse fields, ICSV22, Florence, 12–16 July 2015 (in print)

    Google Scholar 

  • Rad, Ueberle, Krüger (2014) Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements. Rev Sci Instrum 85(1):1–6

    Google Scholar 

  • Rassweiler, Henkel, Köhrmann et al (1992) Lithotriptor technology: present and future. J Endourol 6(1):1–15

    Google Scholar 

  • Rassweiler, Bergsdorf, Ginter et al (2005a) Progress in lithotripter technology. In: Chaussy, Haupt, Jocham et al (Hrsg) Therapeutic energy applications in urology. Thieme, Stuttgart

    Google Scholar 

  • Rassweiler, Tailly, Chaussy (2005b) Progress in lithotriptor technology. EAU Updat Ser 3:17–36

    Google Scholar 

  • Rassweiler, Bergsdorf, Bohris, Burkhardt, Burnes, Forssmann, Meinert, Partheymüller, Vallo, Wess, Williger, Chaussy (2010) Consensus: shock wave technology and application – state of the art in 2010. In: Chaussy, Haupt, Jocham, Köhrmann (Hrsg) Therapeutic energy applications in urology II. Thieme, Stuttgart, S 37–56

    Google Scholar 

  • Rieber (1951) Shock wave generator. US Patent 2:559 227

    Google Scholar 

  • Riedlinger, Ueberle, Wurster et al (1986) Die Zertrümmerung von Nierensteinen durch piezoelektrisch erzeugte Hochenergie-Schallpulse. Urologe A 25:188–192

    Google Scholar 

  • Riedlinger, Weiß, Ueberle (1987) Nichtlinearitäten des transienten Schallfeldes eines piezoelektrischen Hochenergie-Pulssenders. Fortschritte der Akustik DAGA. S 489–493

    Google Scholar 

  • Riedlinger, Emter, Liebler (2007) High pressure pulses generated by piezoelectric half – and full-spheres applied to liquids. In: Proceedings 19th international congress on acoustics, Madrid, 2–7 Sept 2007, PACS: 43.25.Yw

    Google Scholar 

  • Rompe, Hopf, Küllmer et al (1996) Analgesic effect of extracorporeal shock wave therapy on chronic tennis elbow. J Bone Joint Surg (Br) 78 B:233–237

    Google Scholar 

  • Sapozhnikov, Maxwell, MacConaghy, Bailey (2007) A mechanisrtic analysis of stone fracture in lithotripsy. J Acoust Soc 121:1190–1202

    Google Scholar 

  • Sass, Bräunlich, Dreyer, Matura, Folberth, Preismeyer, Seifert (1991) The mechanisms of stone disintegration by shock waves. Ultrasound Med Biol 17(3):239–243

    Google Scholar 

  • Sass, Steffen, Matura et al (1992) Experiences with lithotripters: measurement of standardized fragmentation. J Stone Dis 4(2):129

    Google Scholar 

  • Sauerbruch, Stern (1989) Fragmentation of bile duct stones by extracorporeal shock waves. Gastroenterology 96:146–152

    Google Scholar 

  • Sauerbruch, Delius, Paumgartner et al (1986) Fragmentation of gallstones by extracorporeal shockwaves. N Engl J Med 314:818–822

    Google Scholar 

  • Sauerbruch, Holl, Sackmann et al (1987) Disintegration of a pancreatic duct stone with extracorporeal shock waves in a patient with cronic pancreatitis. Endoscopy 19:207–208

    Google Scholar 

  • Schafer (1993) Cost effective shock wave hydrophones. J Stone Dis 5:73–76

    Google Scholar 

  • Schätzle (1992) Spezielle Fokusdruck-Sensoren für die Lithotripsie und deren Kalibration. Fortschritte der Akustik DAGA

    Google Scholar 

  • Schelling, Delius et al (1994) Extracorporeal shock waves stimulate frog sciatic nerves indirectly via a cavitation-mediated mechanism. Biophys J 6:133–140

    Google Scholar 

  • Schmitz, DePace (2009) Pain relief by extracorporeal shockwave therapy: an update on the current understanding. Urol Res 37:231–234. doi:10.1007/s00240-009-0190-8

    Google Scholar 

  • Schneider, Feigl, Löhr et al (1994) In vitro effects of high energy pulsed ultrasound on human tumor cells. Eur J Gastroenterol Hepatol 6:257–262

    Google Scholar 

  • Seidl, Steinbach, Wöhrle, Hofstädter (1994) Induction of stress fibres and intercellular gaps in human vascular endothelium by shock-waves. Ultrasonics 32(5):397 ff

    Google Scholar 

  • Singh, Agarwal (1990) Mechanical and ultrasonic parameters of kidney stones. J Lithotr Stone Dis 2(2):117–123

    Google Scholar 

  • Smith, Zhong (2012) Stone comminution correlates with the average peak pressure incident on a stone during shock wave lithotripsy. J Biomech 45(15):2520–2525. doi:10.1016/j.jbiomech.2012.07.025. Epub 2012 Aug 27

    Google Scholar 

  • Smith, Simmons, Sankin, Nanke, Fehre, Zhong (2010) A comparison of fiber optic probe hydrophone and light spot hydrophone for lithotripter field characterization. Rev Sci Instrum 83(1):014301. doi:10.1063/1.3678638

    Google Scholar 

  • Staples, Forbes, Ptasznik, Gordon, Buchbinder (2008) A randomized controlled trial of extracorporeal shock wave therapy for lateral epicondylitis (tennis elbow). J Rheumatol 35:2038–2046

    Google Scholar 

  • Staudenraus (1991) Erzeugung und Ausbreitung freifeldfokussierter Hochenergiedruckpulse in Wasser. PhD thesis, University of Stuttgart

    Google Scholar 

  • Staudenraus, Eisenmenger (1993) Fibre-optic probe hydrophone for ultrasonic and shock wave measurements in water. Ultrasonics 31:267–273

    Google Scholar 

  • Steiger (1987) Extracorporal laser induced shock wave lithotripsy (ESWL). In: Laser. MZV-EBM Verlag, Kaufering, S 201–206

    Google Scholar 

  • Steiger (1998) Modellierung der Ausbreitung in extrakorporalen Therapien eingesetzter Ultraschallpulse hoher Intensität. Forschungsberichte aus dem Institut für Höchstfrequenztechnik und Elektronik, Bd 19. Karlsruhe. ISSN 0942-2935

    Google Scholar 

  • Steinbach et al (1993a) Effekte hochenergetischer Ultraschallstoßwellen auf Tumorzellen in vitro und humane Endothelzellen in situ. In: Chaussy et al (Hrsg) Die Stoßwelle. Attempto-Verlag, Tübingen, S 104–109

    Google Scholar 

  • Steinbach, Hofstaedter, Roessler, Wieland (1993b) Determination of energy-dependent extent of vascular damage caused by high-energy shock waves in an umbilical cord model. Urol Res 21:279–282

    Google Scholar 

  • Stranne, Cocks, Gettliffe (1990) Mechanical property studies of human gallstones. J Biomed Mater Res 24:1049–1057

    Google Scholar 

  • Suhr, Brümmer, Hülser (1991) Cavitation-generated free radicals during shock wave exposure: investigations with cell-free solutions and suspended cells. Ultrasound Med Biol 17:761–768

    Google Scholar 

  • Sunka, Babicky, Clupek et al (2004) Localized damage of tissues induced by focused shock waves. IEEE Trans Plasma Sci 32(4):1609–1613

    Google Scholar 

  • Tailly (1999) Consecutive experience with four Dornier lithotripters: HM4, MPL 9000, compact and U/50. J Endourol 13(5):329

    Google Scholar 

  • Teichmann, Portis, Parker et al (2000) In vitro shock wave lithotripsy comparison. J Urol 164:1259–1264

    Google Scholar 

  • Tischer, Hausdorf, Maier, Milz, Zysk (2004) ESWL aus der Sicht des Osteologen. J Mineralstoffwechsel 11(4):29–35

    Google Scholar 

  • Tiselius, Chaussy (2012) Aspects on how extracorporeal shockwave lithotripsy should be carried out in order to be maximally effective. Urol Res 40(5):433–446. doi:10.1007/s00240-012-0485-z. Epub 2012 Jun 27

    Google Scholar 

  • Tschoep, Hartmann, Jox et al (2001) Shock waves: a novel method for cytoplasmic delivery of antisense oligonucleotides. J Mol Med 79:306–313

    Google Scholar 

  • Ueberle (1987) Piezoelektrisch erzeugte Hochenergiepulse und ihre Eignung zur Eignung zur Lithotripsie. In: Ziegler (Hrsg) Die extracorporale und laserinduzierte Stoßwellenlithotripsie bei Harn- und Gallensteinen. Springer, Berlin

    Google Scholar 

  • Ueberle (1988) Ein Konzept zur Ortung und Erkennung von Zielen für Schallpulse hoher Energie. Dissertation, Karlsruhe

    Google Scholar 

  • Ueberle (1997a) Acoustic parameters of pressure pulse sources used in lithotripsy and pain therapy. In: Chaussy et al (Hrsg) High energy shock waves in medicine. Thieme, Stuttgart, S 76–85

    Google Scholar 

  • Ueberle (1997b) Shock wave technology. In: Siebert, Buch (Hrsg) Extracorporeal shock waves in orthopedics. Springer, Berlin, S 59–87

    Google Scholar 

  • Ueberle (2000) Cell transfection by pulsed sound wave effects. Proceedings Microtec. VDI-Verlag, Hannover

    Google Scholar 

  • Ueberle (2003) Pressure pulses in medicine. In: Srivastava, Leutloff, Takayama, Groenig (Hrsg) Shock focussing effects in medical science and sonoluminescence. Springer, Heidelberg

    Google Scholar 

  • Ueberle (2006) Shockwave measurements using an optical light spot hydrophone. In: Jahrestagung der DGBMT, Zürich, Aug 2006

    Google Scholar 

  • Ueberle, Jamshidi, Rad (2013) Characterization of unfocused/weakly focused pressure pulse sources for extracorporeal pain therapy (“Radial Shock Wave Therapy” Sources). BMT 58:1–2

    Google Scholar 

  • Ueberle, Jamshidi, Rad (2015) Unfocused/weakly focused pressure pulse sources for pain therapy: measurements in water and in a dry test bench. Acta Phys Pol A 127:135–137

    Google Scholar 

  • Vakil, Gracewski, Everbach (1991) Relationship of model stone properties to fragmentation mechanisms during lithotripsy. J Lithotr Stone Dis 3(4):304–310

    Google Scholar 

  • Valchanou, Michailow (1991) High energy shockwaves in the treatment of delayed and nonunion fractures. Int Orthop (SICOT) 15:181–184

    Google Scholar 

  • Vergunst, Onno, Terpestra et al (1989) Assessment of shock wave pressure profiles in vitro: clinical implications. J Lithotr Stone Dis 1(4)

    Google Scholar 

  • Vergunst, Onno, Terpestra et al (1990) In vivo assessment of shock-wave pressures. Gastroenterology 1467–1474

    Google Scholar 

  • Wang (2012) Extracorporeal shockwave therapy in muscoskeletal disorders. J Orthop Surg Res 7:11. http://www.josr-online.com/content/7/1/11. Zugegriffen am 31.1.2013

  • Wess (2009) Der schwebende Patient. In: Zimmermann R (Hrsg) Dornier erlebt. Verlag Senn, Tettnang, S 303–310

    Google Scholar 

  • Wess, Marlinghaus, Katona (1989) Lars, eine großaperturige leistungsschallquelle für medizinische Anwendungen. Fortschritte der Akustik DAGA 295 ff. DPG Verlag, Bad Honnef

    Google Scholar 

  • Wess, Ueberle, Dührßen, Hilcken, Reuner, Schultheiß, Staudenraus, Rattner, Haaks, Granz (1997) Working group technical developments – consensus report. In: Chaussy et al (Hrsg) High energy shock waves in medicine. Thieme, Stuttgart, S 59–71

    Google Scholar 

  • Wiksell, Kinn (1995) Implications of cavitation phenomena for shot intervals in extracorporeal shock wave lithotripsy. Br J Urol 75:720–723

    Google Scholar 

  • Wolfrum (2004) Cavitation and shock wave effects on biological systems. Dissertation, Göttingen, S 14

    Google Scholar 

  • Xi, Zhong (2001) Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy. J Acoust Soc Am 109(3):1226–1239

    Google Scholar 

  • Xu Yahong Xu, Yi Lu, Jian Li, Shunwen Luo, Yang Liu, Zhigang Jia, Ping Chen, Yu Guo, Qihua Zhao, Xiaoping Ma, Shufang Jia (2014) A meta-analysis of the efficacy of ureteroscopic lithotripsy and extracorporeal shock wave lithotripsy on ureteral calculi. Acta Cir Bras 29(4). doi:10.1590/S0102-86502014000500010

    Google Scholar 

  • Zhong (2013) Shock wave lithotripsy. In: Delale (Hrsg) Bubble dynamics & shock waves. Shockwaves 8. Springer, S 291–338. doi:10.1007/978-3-642-34297-4_10

    Google Scholar 

  • Zhong, Preminger (1994) Mechanisms of differing stone fragility in extracorporeal shock wave lithotripsy. J Endourol 8:163–168

    Google Scholar 

  • Zhong, Cioanta, Cocks, Preminger (1998) Effects of tissue constraint on shock wave-induced bubble oscillation in vivo. In: 135th ASA Conf Proc, Seattle, S 2495 f

    Google Scholar 

  • Zhong, Zhou, Zhu (2001) Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in ESWL. Ultrasound Med Biol 27(1):119–134

    Google Scholar 

  • Zhu, Zhong (2002) The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol 28:661–671; found in: http://www.duke.edu/~slzhu/research/fv/sf/research1g.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Ueberle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ueberle, F. (2015). Einsatz von Stoßwellen in der Medizin. In: Kramme, R. (eds) Medizintechnik. Springer Reference Technik . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45538-8_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45538-8_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-662-45538-8

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics