Zusammenfassung
Der Anforderung von Industrie 4.0 nach flexiblen Software-Architekturen für eine digitale Vernetzung kann durch Multiagenten-Systeme begegnet werden, die Integration autonomer Problemlösung erfordert aber kognitive Software-Architekturen, die über regelbasierte Systeme hinausgehen. BDI-Agenten sind durch ihre Ziel- und Kontext-Orientierung ein Lösungsansatz, da sie mit verschiedenen Stufen kognitiver Komplexität zur Bearbeitung von Aufgaben eingesetzt werden können. Ihre Kommunikation kann durch serviceorientierter Architekturen gewährleistet werden, wodurch auch die Anbindung an andere IT-Systeme erfolgen kann. Steuerungskonzepte für eine Supply Chain, ein Transportsystem und ein Produktionssystem demonstrieren den Einsatz von BDI-Agenten. Daraus wird eine Klassifikation von Agenten für industrielle Anwendungen abgeleitet. Abschließend wird eine ganzheitliche Industrie 4.0-Architektur durch das Framework Arrowhead, die Verwaltungsschale und BDI-Agenten beschrieben.
Schlüsselwörter
- Industrie 4.0
- I4.0-System
- BDI-Agent
- Multiagenten-System
- I4.0-Architektur
- Framework
- Middleware
- Agentenplattform
- Active-Component
- Active-Component-Shell
- Serviceorientierte Architektur
- Systemintegration
- Kognitive Komplexität
- Zeitsensitivität
- Autonomie
- RAMI4.0
- Interoperabilität
- KoWest
- Supply Chain
- Produktionssystem
This is a preview of subscription content, access via your institution.











Literatur
Adeyeri MK, Mpofu K, Olukorede TA (2015) Integration of agent technology into manufacturing enterprise: a review and platform for industry 4.0. In: International Conference on Industrial Engineering and Operations Management (IEOM). Dubai, United Arab Emirates, S 1–10
Ahn HJ, Lee H, Park SJ (2003) A flexible agent system for change adaption in supply chains. Expert Syst Appl:603–618
Baumgärtel H (2019) Electronics and ICT as enabler for digital industry and optimized supply chain management covering the entire product lifecycle, Projektbericht, Productive 4.0 Project Consortium (ID: 737459)
Baumgärtel H, Ehm H, Laaouane S, Gerhardt J, Kasprzik A (2018) Collaboration in supply chains for development of CPS enabled by semantic web technologies. In: 2018 Winter Simulation Conference (WSC). IEEE Press, Gothenburg, Sweden, S 3627–3638
Bearzotti L, Salomone E, Chiotti O (2012) An autonomous multi-agent approach to supply chain event management. Int J Prod Econ:468–478
Bellifemine F, Poggi A, Rimassa G (2001) JADE: a FIPA2000 compliant agent development environment. In: Proceedings of the 5th international conference on Autonomous agents. Montreal, Canada, S 216–217
Bicaku A, Maksuti S, Hegedus C, Tauber M, Delsing J, Eliasson J (2018) Interacting with the arrowhead local cloud: on-boarding procedure, In: Proceedings 2018 IEEE Industrial Cyber-Physical Systems (ICPS), IEEE, Piscataway, USA, S 743–748
Bogon T (2012) Agentenbasierte Schwarmintelligenz. Dissertation
Bratman M (1987) Intention, plans, and practical reason. Harvard University Press, Cambridge
Braubach L, Pokahr A (2012) Developing distributed systems with active components and Jadex. Scalable Comput Pract Exp:100–120
Braubach L, Lamersdorf W, Pokahr A (2003) Implementing a BDI-infrastructure for JADE agents. EXP, S 76–85
Bussmann S (2012) Production 2000+. http://www.stefan-bussmann.de/en/agents/p2000p.html. Zugegriffen am 25.10.2019
Bussmann S, Schild K (2001) An agent-based approach to the control of flexible production systems. In: 8th International Conference on Emerging Technologies and Factory Automation. Boston, USA, S 481–488
Bussmann S, Jennings NR, Wooldridge MJ (2013) Multiagent systems for manufacturing control: a design methodology. Springer Science & Business Media. Springer-Verlag Berlin Heidelberg
D’Andrea R, Wurman P (2008) Future challenges of coordinating hundreds of autonomous vehicles in distribution facilities. In: International Conference on Technologies for Practical Robot Applications (TePRA). Woburn, USA, S 80–83
Delsing J (2017a) IoT automation: arrowhead framework. CRC Press, Taylor & Francis Group, Boca Raton
Delsing J (2017b) Local cloud internet of things automation: Technology and business model features of distributed internet of things automation solutions. IEEE Ind Electron Mag:8–21
Derhamy H, Eliasson J, Delsing J, Priller P (2015) A survey of commercial frameworks for the internet of things. In: 20th Conference on Emerging Technologies & Factory Automation. Luxembourg City, Luxembourg, S 1–8
DIN. 16593-1 (2018) Reference model for industrie 4.0 service architectures. DIN, Beuth Verlag GmbH, Berlin
DIN. 19233 (1999) Leittechnik – Prozessautomatisierung – Automatisierung mit Prozessrechensystemen. DIN, Beuth Verlag GmbH, Berlin
FIPA (2019) FIPA. http://www.fipa.org/index.html. Zugegriffen am 05.06.2019
Fortino G, Russo W, Savaglio C, Shen W, Zhou M (2017) Agent-oriented cooperative smart objects: from IoT system design to implementation. IEEE Trans Syst Man Cybern:1–18
Fujita K, Bai Q, Ito T, Zhang M, Ren F, Aydoğan R, Hadfi R (2017) Modern approaches to agent-based complex automated negotiation, Bd 674. Springer International Publishing, Cham
George M, Lansky A (1987) Reactive reasoning and planning: an experiment with a mobile robot. In: Proceedings of the 6th National Conference on Artificial Intelligence (AAAI 1987). Seattle, USA, S 677
Grangel-González I, Halilaj L, Coskun G, Auer S, Collarana D, Hoffmeister M (2016) Towards a semantic administrative shell for industry 4.0 components. In: 10th International Conference on Semantic Computing (ICSC). Laguna Hills, USA, S 230–237
Guerra-Hernández A, El Fallah-Seghrouchni A, Soldano H (2004) Learning in BDI multi-agent systems. In: International workshop on computational logic in multi-agent systems. Springer, Berlin/Heidelberg, S 218–233
Herron D, Castillo O, Lewis R (2015) Systems and methods for individualized customer retail services using RFID wristbands: U.S. Patent Application(14/034,395)
Jabeur N, Al-Belushi T, Mbarki M, Gharrad H (2017) Toward leveraging smart logistics collaboration with a multi-agent system based solution. Procedia Comput Sci:672–679. https://doi.org/10.1016/j.procs.2017.05.374
Kamdar R, Paliwal P, Kumar Y (2018) A state of art review on various aspects of multi-agent system. J Circuit Syst Comp:1830006. https://doi.org/10.1142/S0218126618300064
Kantamneni A, Brown L, Parker G, Weaver WW (2015) Survey of multi-agent systems for microgrid control. Eng Appl Artif Intell:192–203
Khare AR, Kumar BY (2015) Multiagent structures in hybrid renewable power system: a review. J Renew Sustain Energy:63101. https://doi.org/10.1063/1.4934668
Kinny D, Georgeff M, Rao A (1996) A methodology and modelling technique for systems of BDI agents. In: European workshop on modelling autonomous agents in a multi-agent world. Springer, Berlin/Heidelberg, S 56–71
Kirn S, Herzog O, Lockermann P, Spaniol O (2006) Multiagent engineering: Theory and applications in enterprises. International handbooks on information systems. Springer, Berlin/New York
Kravari K, Bassiliades N (2015) A survey of agent platforms. J Artif Soc Soc Simul:11
Kunze O, Baumgärtel H, Neitmann A, Rosemeier S (2012) Dynamic Truck Meeting (DTM): Ein Prozess- & Schnittstellenstandard zur Realisierung von dynamischen Begegnungsverkehren mit Hilfe von Dispositions- und Telematik-Systemen (ca. 2012). https://edocs.tib.eu/files/e01fn12/731853814.pdf. Zugegriffen am 23.01.2020
Laird J (2012) The Soar cognitive architecture. MIT Press, Cambridge, MA/London
Lu Y (2017) Industry 4.0: a survey on technologies, applications and open research issues. J Ind Inf Integr:1–10
Malakuti S, Bock J, Weser M, Venet P, Zimmermann P, Wiegand M, Grothoff J, Wagner C, Bayha A (2018) Challenges in skill-based engineering of industrial automation systems *. In: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, Turin, Italien, S 67–74
Mayer S (2009) Development of a completely decentralized control system for modular continuous conveyors. Dissertation, Karlsruhe Institute of Technology
Park HS, Tran NH (2011) An autonomous manufacturing system for adapting to disturbances. Int J Adv Manuf Technol:1159–1165
Pokahr A, Braubach L (2011) Active components: a software paradigm for distributed systems. In: Proceedings of International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2011). Lyon, France, S 141–144
Pudāne M, Lavendelis E (2017) General guidelines for design of affective multi-agent systems. Appl Comput Syst:5–12. https://doi.org/10.1515/acss-2017-0012
Rao AS (1996) AgentSpeak (L): BDI agents speak out in a logical computable language. In: European workshop on modelling autonomous agents in a multi-agent world. Springer, Berlin/Heidelberg, S 42–55
Riehle D (2000) Framework design: a role modeling approach. Dissertation, ETH Zürich
Russell SJ, Norvig P (2016) Artificial intelligence: a modern approach. Pearson Education, Pearson Verlag, Boston Columbus Indianapolis
Sun R, Merrill E, Peterson T (2001) From implicit skills to explicit knowledge: a bottom-up model of skill learning. Cogn Sci:203–244
Tjahjono B, Esplugues C, Ares E, Pelaez G (2017) What does industry 4.0 mean to supply chain? Procedia Manuf:1175–1182
Trunzer E, Cala A, Leitao P, Gepp M, Kinghorst J, Lüder A, Schauerte H, Reiferscheid M, Vogel-Heuser B (2019) System architectures for industrie 4.0 applications-derivation of a generic architecture proposal. Prod Eng:247–257
Varga P, Blomstedt F, Ferreira LL, Eliasson J, Johansson M, Delsing J, Martínez de Soria I (2017) Making system of systems interoperable: the core components of the arrowhead framework. J Netw Comput Appl:85–95. https://doi.org/10.1016/j.jnca.2016.08.028
VDI/VDE. 2653 (2010) Agentensysteme in der Automatisierungstechnik. VDI/VDE, Berlin/Heidelberg
VDI/VDE. 2653 (2013) Agentensysteme in der Automatisierungstechnik. VDI/VDE, Berlin/Heidelberg
Vogel-Heuser B, Diedrich C, Pantforder D, Gohner P (2014) Coupling heterogeneous production systems by a multi-agent based cyber-physical production system. In: 12th International Conference on Industrial Informatics (INDIN). Porto Alegre, Brazil, S. 713–719
Wang K (2016) Intelligent predictive maintenance (IPdM) system–industry 4. 0 scenario. WIT Trans Eng Sci:259–268
Wooldridge MJ (2009) An introduction to multiagent systems, 2. Aufl. Wiley, Chichester
Wooldridge M, Jennings NR, Kinny D (2000) The Gaia methodology for agent-oriented analysis and design. Auton Agent Multi-Agent Syst:285–312
Wörn H, Brinkschulte U (2006) Echtzeitsysteme. Grundlagen, Funktionsweisen, Anwendungen. Springer, Berlin
Ye X, Hong SH (2019) Toward industry 4.0 components: insights into and implementation of asset administration shells. IEEE Ind Electron Mag:13–25. https://doi.org/10.1109/MIE.2019.2893397
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature
About this entry
Cite this entry
Verbeet, R., Baumgärtel, H. (2020). Implementierung von autonomen I4.0-Systemen mit BDI-Agenten. In: ten Hompel, M., Vogel-Heuser, B., Bauernhansl, T. (eds) Handbuch Industrie 4.0. Springer Reference Technik (). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45537-1_130-1
Download citation
DOI: https://doi.org/10.1007/978-3-662-45537-1_130-1
Received:
Accepted:
Published:
Publisher Name: Springer Vieweg, Berlin, Heidelberg
Print ISBN: 978-3-662-45537-1
Online ISBN: 978-3-662-45537-1
eBook Packages: Springer Referenz Technik & Informatik
Chapter History
-
Latest
Implementierung von autonomen I4.0-Systemen mit BDI-Agenten- Published:
- 24 June 2021
DOI: https://doi.org/10.1007/978-3-662-45537-1_130-2
-
Original
Implementierung von autonomen I4.0-Systemen mit BDI-Agenten- Published:
- 27 February 2020
DOI: https://doi.org/10.1007/978-3-662-45537-1_130-1