Skip to main content

Multiple Sklerose: Diagnostik

  • Living reference work entry
  • First Online:
Klinische Neurologie

Part of the book series: Springer Reference Medizin ((SRM))

  • 954 Accesses

Zusammenfassung

Die multiple Sklerose (MS) ist eine der häufigsten neurologischen Erkrankungen, für deren Ursache es bislang keine einheitliche Erklärung gibt. Entscheidend für die Diagnosestellung sind die klinischen Symptome, ergänzt durch die Magnetresonanztomografie (MRT). Hauptkriterium ist die örtliche und zeitliche Dissemination von entzündlichen Manifestationen im ZNS. Eine Liquoruntersuchung zum Nachweis der entzündlichen Genese nachgewiesener multifokaler Störungen ist bei allen unklaren Fällen und bei älteren Patienten erforderlich. Zur Bestätigung und Verlaufskontrolle sind elektrophysiologische Verfahren hilfreich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Barkhof F, Calabresi PA, Miller DH, Reingold SC (2009) Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 5(5):256–266

    Article  Google Scholar 

  • Calabrese M, Filippi M, Rovaris M et al (2008) Morphology and evolution of cortical lesions in multiple sclerosis. A longitudinal MRI study. NeuroImage 42:1324–1328

    Article  Google Scholar 

  • Chen JT, Collins DL, Atkins HL et al (2008) Magnetisation transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann Neurol 63:254–262

    Article  Google Scholar 

  • Costello F, Coupland S, Hodge W et al (2006) Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 59(6):963–969

    Article  Google Scholar 

  • Di Maggio G, Santangelo R, Guerrieri S et al (2014) OCT and VEP: which is more sensitive in multiple sclerosis. MSJ. https://doi.org/10.1177/1352458514524293

    Article  Google Scholar 

  • Faiss JH, Köhler W (2018) MS – nursing. In: Schmidt RM, Hoffmann FA, Faiss JH, Köhler W, Zettl UK (Hrsg) Multiple Sklerose, 7. Aufl. Elsevier, München, S 415–420

    Chapter  Google Scholar 

  • Fernando KTM, Tozer DJ, Miszkiel KA et al (2005) Magnitization transfer histograms in clinically isolated syndromes suggestive of multiple sclerosis. Brain 128:2911–2925

    Article  CAS  Google Scholar 

  • Filippi M, Rocca MA, Ciccarelli O et al (2016) MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol 15:292–303

    Article  Google Scholar 

  • Frohman EM, Costello F, Zivadinov R et al (2006) Optical coherence tomography in multiple sclerosis. Lancet Neurol 5:853–863

    Article  Google Scholar 

  • Frohman EM, Fujimoto JG, Frohman TC et al (2008) Optical coherence tomography: a window into the mechanism of multiple sclerosis. Nat Clin Pract Neurol 4(12):664–675

    Article  Google Scholar 

  • Gracien RM, Jurcoane A, Wagner M et al (2016) Multimodal quantitative MRI assessment of cortical damage in RRMS. JMRI 44:1600–1607

    Article  Google Scholar 

  • Hagens M, Berckel B, Barkhof F (2016) Novel MRI and PET markers of neuroinflammation in MS. Curr Opin Neurol 29:229–236

    Article  CAS  Google Scholar 

  • Heckl RW (1994) Multiple Sklerose: Klinik, Differenzialdiagnose, Behandlung. Thieme, Stuttgart

    Google Scholar 

  • Kelly SB, Kinsella K, Duggan M et al (2013) A proposed modification to the McDonald 2010 criteria for the diagnosis of primary progressive multiple sclerosis. Mult Scler Jul 19(8):1095–1100

    Article  CAS  Google Scholar 

  • Kornek B (2012) Treatment of pediatric MS. Neuropediatrics 44(06):309–313

    Google Scholar 

  • Kurtzke JF (1983) Rating neurologic impairment in MS: an expanded disability status scale (EDSS). Neurology 89:714–721

    Google Scholar 

  • Leocani L, Rocca MA, Comi G (2016) MRI and neurophysiological measures to predict course, disability and treatment response in multiple sclerosis. Curr Opin Neurol 29:243–253

    Article  CAS  Google Scholar 

  • McDonald W, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  CAS  Google Scholar 

  • Petzold A, de Boer JF, Schippling S et al (2010) Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 9:921–932

    Article  Google Scholar 

  • Petzold A, Wattjes MP, Costello F et al (2014) The investigation of acute optic neuritis: a review and proposed protokol. Nat Rev Neurol 10(8):447–458

    Article  Google Scholar 

  • Polman CH, Rudick A (2010) The MSFC: a clinically meaningful measure of disability. Neurology 74(Suppl. 3):S8–S15

    Article  Google Scholar 

  • Polman CH, Reingold SC, Edan G et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions of the „McDonald criteria“. Ann Neurol 58(6):840–846

    Article  Google Scholar 

  • Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for MS: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302

    Article  Google Scholar 

  • Ratchford JN, Saidha S, Sotirchos ES et al (2012) Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology 80(1):47–54

    Article  Google Scholar 

  • Robinson I (1991) The context and consequences of communicating the diagnosis of multiple sclerosis. In: Wiethölter H, Dichgans J, Mertin J (Hrsg) Current concepts in multiple sclerosis. Elsevier, Amsterdam, S 17–22

    Google Scholar 

  • Sailer M, Fazekas F, Gass A et al (2008) Zerebrale und spinale MRT-Untersuchung bei Patienten mit klinisch isoliertem Syndrom oder gesicherter Multipler Sklerose. Fortschr Röntgenstr 180:994–1001

    Article  CAS  Google Scholar 

  • Scheglmann K (1995) Multiple Sklerose: Multimodal evozierte Potenziale in der Diagnose. TW Neurol Psychiatr 9:562–573

    Google Scholar 

  • Schippling S, Balk L, Costello F et al (2014) Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler 21:163. https://doi.org/10.1177/1352458514538110 [Epub vor Druck]

    Article  PubMed  Google Scholar 

  • Schlaeger R, Schindler C, Grize L et al (2014) Combined visual and motor evoked potentials predict MS disability after 20 years. MSJ. https://doi.org/10.1177/1352458514525867

    Article  Google Scholar 

  • Schneider E, Zimmermann H, Oberwahrenbrock T et al (2013) Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS One 8(6):e66151

    Article  CAS  Google Scholar 

  • Solomon AS, Bourdette DN, Cross AH et al (2016) The contemporary spectrum of MS misdiagnosis. Neurology 87:1393–1399

    Article  Google Scholar 

  • Sombekke MH, Watties MP, Balk LJ et al (2013) Spinal cord lesions in patients with clinically isolated syndrome: A powerful tool in diagnosis and prognosis. Neurol 80(1):69–75

    Article  Google Scholar 

  • Thompson AJ, Banwell BI, Barkhof F et al (2018) Diagnosis of MS: 2017 revision of the McDonald criteria. Lancet Neurol 17:162–173

    Article  Google Scholar 

  • Tintoré M, Rovira A, Rio J et al (2008) Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis? Neurology 70:1079–1083

    Article  Google Scholar 

  • Villar LM, Garcia-Barragán N, Sádaba MC et al (2008) Accuracy of CSF and MRI criteria for dissemination in space in the diagnosis of multiple sclerosis. J Neurol Sciences 266:34–37

    Article  Google Scholar 

  • Young KL, Brandt AU, Petzold A et al (2013) Loss of retinal fiber layer axons indicates white but not gray matter damage in early multiple sclerosis. Eur J Neurol 20(5):803–811

    Article  CAS  Google Scholar 

  • Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N (2008) Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain 131:288–303

    Article  Google Scholar 

  • Zivadinov R (2007) Can imaging techniques measure neuroprotection and remyelination in multiple sclerosis? Neurology 68(Suppl):S72–S82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Faiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Faiss, J. (2019). Multiple Sklerose: Diagnostik. In: Berlit, P. (eds) Klinische Neurologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44768-0_159-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44768-0_159-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44768-0

  • Online ISBN: 978-3-662-44768-0

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics