Skip to main content

Physiology of the Developing Kidney: Acid-Base Homeostasis and Its Disorders

  • Reference work entry
  • First Online:
  • 7292 Accesses

Abstract

The body is highly dependent on acid–base control by the kidneys, lungs, and buffer systems to provide a cellular environment suitable for normal health, growth, and development. The acid and alkali loads from ingesting food and fluid must be managed so that the extracellular hydrogen ion (H+) concentration is maintained within a very narrow range. There are serious consequences from acid–base perturbations. Patients with severe acidemia, high blood levels of H+, may have problems with hyperkalemia, increased susceptibility to cardiac dysrhythmias, osteopenia, recurrent nephrolithiasis, skeletal muscle atrophy, and growth retardation in children

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mahutte CK. On-line arterial blood gas analysis with optodes: current status. Clin Biochem. 1998;31:119–30.

    Article  CAS  PubMed  Google Scholar 

  2. J-L H. High performance GdTixOy electrolyte-insulator-semiconductor pH sensor and biosensor. Intl J Electrochem Sci. 2013;8:606–20.

    Google Scholar 

  3. Story DA. Bench-to-bedside review: a brief history of clinical acid-base. Crit Care. 2004;8:253–8.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Weiner DI, Verlander JW. Renal acidification mechanisms. In: Brenner & Rector’s the kidney, 9th ed. Philadelphia: Elsevier/Saunders, Ch 9 2012. p. 293–325.

    Google Scholar 

  5. Levraut J, Giunti C, Ciebiera JP, et al. Initial effect of sodium bicarbonate on intracellular pH depends on the extracellular nonbicarbonate buffering capacity. Crit Care Med. 2001;29:1033–9.

    Article  CAS  PubMed  Google Scholar 

  6. Burton RF. The roles of intracellular buffers and bone mineral in the regulation of acid-base balance in mammals. Comp Biochem Physiol Comp Physiol. 1992;102:425–32.

    Article  CAS  PubMed  Google Scholar 

  7. Rector Jr FC, Carter NW, Seldin DW. The mechanism of bicarbonate reabsorption in the proximal and distal tubules of the kidney. J Clin Invest. 1965;44:278–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bobulescu IA, Moe OW. Na+/H+ exchangers in renal regulation of acid-base balance. Semin Nephrol. 2006;26:334–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ledoussal C, Lorenz JN, Nieman ML, Soleimani M, Schultheis PJ, Shull GE. Renal salt wasting in mice lacking NHE3 Na+/H+ exchanger but not in mice lacking NHE2. Am J Physiol. 2001;281:F718–27.

    CAS  Google Scholar 

  10. Lorenz JN, Schultheis PJ, Traynor T, Shull GE, Schnermann J. Micropuncture analysis of single-nephron function in NHE3-deficient mice. Am J Physiol. 1999;277:F447–53.

    CAS  PubMed  Google Scholar 

  11. Nakamura S, Amlal H, Schultheis PJ, Galla JH, Shull GE, Soleimani M. HCO-3 reabsorption in renal collecting duct of NHE-3-deficient mouse: a compensatory response. Am J Physiol. 1999;276:F914–21.

    CAS  PubMed  Google Scholar 

  12. Schultheis PJ, Clarke LL, Meneton P, et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet. 1998;19:282–5.

    Article  CAS  PubMed  Google Scholar 

  13. Kinne-Saffran E, Beauwens R, Kinne R. An ATP-driven proton pump in brush-border membranes from rat renal cortex. J Membr Biol. 1982;64:67–76.

    Article  CAS  PubMed  Google Scholar 

  14. Wang T, Yang CL, Abbiati T, et al. Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Physiol. 1999;277:F298–302.

    CAS  PubMed  Google Scholar 

  15. Gluck SL, Lee BS, Wang SP, Underhill D, Nemoto J, Holliday LS. Plasma membrane V-ATPases in proton-transporting cells of the mammalian kidney and osteoclast. Acta Physiol Scand. 1998;643:203–12.

    CAS  Google Scholar 

  16. Nakhoul NL, Hamm LL. Vacuolar H(+)-ATPase in the kidney. J Nephrol. 2002;15 Suppl 5:S22–31.

    CAS  PubMed  Google Scholar 

  17. Stone DK, Crider BP, Xie XS. Structural properties of vacuolar proton pumps. Kidney Int. 1990;38:649–53.

    Article  CAS  PubMed  Google Scholar 

  18. Shah M, Quigley R, Baum M. Neonatal rabbit proximal tubule basolateral membrane Na+/H+ antiporter and Cl-/base exchange. Am J Physiol. 1999;276:R1792–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Baum M. Developmental changes in rabbit juxtamedullary proximal convoluted tubule acidification. Pediatr Res. 1992;31:411–4.

    Article  CAS  PubMed  Google Scholar 

  20. Baum M, Quigley R. Maturation of proximal tubular acidification. Pediatr Nephrol. 1993;7:785–91.

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz GJ, Evan AP. Development of solute transport in rabbit proximal tubule. I. HCO-3 and glucose absorption. Am J Physiol. 1983;245:F382–90.

    CAS  PubMed  Google Scholar 

  22. Shah M, Gupta N, Dwarakanath V, Moe OW, Baum M. Ontogeny of Na+/H+ antiporter activity in rat proximal convoluted tubules. Pediatr Res. 2000;48:206–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Fukuda Y, Aperia A. Differentiation of Na + -K+ pump in rat proximal tubule is modulated by Na + -H+ exchanger. Am J Physiol. 1988;255:F552–7.

    CAS  PubMed  Google Scholar 

  24. Larsson SH, Rane S, Fukuda Y, Aperia A, Lechene C. Changes in Na influx precede post-natal increase in Na, K-ATPase activity in rat renal proximal tubular cells. Acta Physiol Scand. 1990;138:99–100.

    Article  CAS  PubMed  Google Scholar 

  25. Wong PS, Johns EJ. The action of angiotensin II on the intracellular sodium content of suspensions of rat proximal tubules. J Physiol. 1996;497(Pt 1):219–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Purkerson JM, Schwartz GJ. The role of carbonic anhydrases in renal physiology. Kidney Int. 2007;71:103–15.

    Article  CAS  PubMed  Google Scholar 

  27. Pushkin A, Abuladze N, Gross E, et al. Molecular mechanism of kNBC1-carbonic anhydrase II interaction in proximal tubule cells. J Physiol. 2004;559:55–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Gross E, Kurtz I. Structural determinants and significance of regulation of electrogenic Na(+)-HCO(3)(-) cotransporter stoichiometry. Am J Physiol. 2002;283:F876–87.

    Google Scholar 

  29. Soleimani M, Grassi SM, Aronson PS. Stoichiometry of Na + -HCO-3 cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. J Clin Invest. 1987;79:1276–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kondo Y, Fromter E. Axial heterogeneity of sodium-bicarbonate cotransport in proximal straight tubule of rabbit kidney. Pflugers Arch. 1987;410:481–6.

    Article  CAS  PubMed  Google Scholar 

  31. Kondo Y, Fromter E. Evidence of chloride/bicarbonate exchange mediating bicarbonate efflux from S3 segments of rabbit renal proximal tubule. Pflugers Arch. 1990;415:726–33.

    Article  CAS  PubMed  Google Scholar 

  32. Seki G, Fromter E. The chloride/base exchanger in the basolateral cell membrane of rabbit renal proximal tubule S3 segment requires bicarbonate to operate. Pflugers Arch. 1990;417:37–41.

    Article  CAS  PubMed  Google Scholar 

  33. Steinmetz PR. Cellular organization of urinary acidification. Am J Physiol. 1986;251:F173–87.

    CAS  PubMed  Google Scholar 

  34. Breton S, Brown D. New insights into the regulation of V-ATPase-dependent proton secretion. Am J Physiol. 2007;292:F1–10.

    CAS  Google Scholar 

  35. Wang T, Hropot M, Aronson PS, Giebisch G. Role of NHE isoforms in mediating bicarbonate reabsorption along the nephron. Am J Physiol. 2001;281:F1117–22.

    CAS  Google Scholar 

  36. Wang T, Malnic G, Giebisch G, Chan YL. Renal bicarbonate reabsorption in the rat. IV. Bicarbonate transport mechanisms in the early and late distal tubule. J Clin Invest. 1993;91:2776–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Stuart-Tilley AK, Shmukler BE, Brown D, Alper SL. Immunolocalization and tissue-specific splicing of AE2 anion exchanger in mouse kidney. J Am Soc Nephrol. 1998;9:946–59.

    CAS  PubMed  Google Scholar 

  38. Alper SL, Stuart-Tilley AK, Biemesderfer D, Shmukler BE, Brown D. Immunolocalization of AE2 anion exchanger in rat kidney. Am J Physiol. 1997;273:F601–14.

    CAS  PubMed  Google Scholar 

  39. Ko SB, Luo X, Hager H, et al. AE4 is a DIDS-sensitive Cl(-)/HCO(-)(3) exchanger in the basolateral membrane of the renal CCD and the SMG duct. Am J Physiol Cell Physiol. 2002;283:C1206–18.

    Article  CAS  PubMed  Google Scholar 

  40. Xu J, Worrell RT, Li HC, et al. Chloride/bicarbonate exchanger SLC26A7 is localized in endosomes in medullary collecting duct cells and is targeted to the basolateral membrane in hypertonicity and potassium depletion. J Am Soc Nephrol. 2006;17:956–67.

    Article  CAS  PubMed  Google Scholar 

  41. Petrovic S, Barone S, Xu J, et al. SLC26A7: a basolateral Cl-/HCO3- exchanger specific to intercalated cells of the outer medullary collecting duct. Am J Physiol. 2004;286:F161–9.

    CAS  Google Scholar 

  42. McKinney TD, Burg MB. Bicarbonate absorption by rabbit cortical collecting tubules in vitro. Am J Physiol. 1978;234:F141–5.

    CAS  PubMed  Google Scholar 

  43. Good DW, Burg MB. Ammonia production by individual segments of the rat nephron. J Clin Invest. 1984;73:602–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Curthoys NP, Lowry OH. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J Biol Chem. 1973;248:162–8.

    CAS  PubMed  Google Scholar 

  45. Tannen RL, Sahai A. Biochemical pathways and modulators of renal ammoniagenesis. Miner Electrolyte Metab. 1990;16:249–58.

    CAS  PubMed  Google Scholar 

  46. Hamm LL, Simon EE. Ammonia transport in the proximal tubule in vivo. Am J Kidney Dis. 1989;14:253–7.

    Article  CAS  PubMed  Google Scholar 

  47. Flessner MF, Mejia R, Knepper MA. Ammonium and bicarbonate transport in isolated perfused rodent long-loop thin descending limbs. Am J Physiol. 1993;264:F388–96.

    CAS  PubMed  Google Scholar 

  48. Strnad Z. Numerical calculation of basic indicators of blood acid-base balance using an equilibration method. Vet Med. 1986;31:557–64.

    CAS  Google Scholar 

  49. Edelmann CM, Soriano JR, Boichis H, Gruskin AB, Acosta MI. Renal bicarbonate reabsorption and hydrogen ion excretion in normal infants. J Clin Invest. 1967;46:1309–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Swan RC, Axelrod DR, Seip M, Pitts RF. Distribution of sodium bicarbonate infused into nephrectomized dogs. J Clin Invest. 1955;34:1795–801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Gunn VL, Barone MA. Johns hopkins hospital. Children’s medical and surgical center. The Harriet Lane handbook : a manual for pediatric house officers. 16th ed. Philadelphia: Mosby; 2002.

    Google Scholar 

  52. Story DA, Morimatsu H, Bellomo R. Strong ions, weak acids and base excess: a simplified Fencl-Stewart approach to clinical acid-base disorders. Br J Anaesth. 2004;92:54–60.

    Article  CAS  PubMed  Google Scholar 

  53. Andersen OS. Blood acid-base alignment nomogram. Scales for pH, pCO2 base excess of whole blood of different hemoglobin concentrations, plasma bicarbonate, and plasma total-CO2. Scand J Clin Lab Invest. 1963;15:211–7.

    Article  CAS  PubMed  Google Scholar 

  54. Emmett M, Narins RG. Clinical use of the anion gap. Medicine (Baltimore). 1977;56:38–54.

    Article  CAS  Google Scholar 

  55. Kraut JA, Madias NE. Approach to patients with acid-base disorders. Respir Care. 2001;46:392–403.

    CAS  PubMed  Google Scholar 

  56. Figge J, Jabor A, Kazda A, Fencl V. Anion gap and hypoalbuminemia. Crit Care Med. 1998;26:1807–10.

    Article  CAS  PubMed  Google Scholar 

  57. Weizman Z, Houri S, Ben-Ezer GD. Type of acidosis and clinical outcome in infantile gastroenteritis. J Pediatr Gastroenterol Nutr. 1992;14:187–91.

    Article  CAS  PubMed  Google Scholar 

  58. Garella S, Chang BS, Kahn SI. Dilution acidosis and contraction alkalosis: review of a concept. Kidney Int. 1975;8:279–83.

    Article  CAS  PubMed  Google Scholar 

  59. Moe OW, Fuster D. Clinical acid-base pathophysiology: disorders of plasma anion gap. Best Pract Res Clin Endocrinol Metab. 2003;17:559–74.

    Article  CAS  PubMed  Google Scholar 

  60. Schwartz WB, Orning KJ, Porter R. The internal distribution of hydrogen ions with varying degrees of metabolic acidosis. J Clin Invest. 1957;36:373–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Burnell JM. Changes in bone sodium and carbonate in metabolic acidosis and alkalosis in the dog. J Clin Invest. 1971;50:327–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kurtzman NA. Relationship of extracellular volume and CO2 tension to renal bicarbonate reabsorption. Am J Physiol. 1970;219:1299–304.

    CAS  PubMed  Google Scholar 

  63. Hoste EA, Colpaert K, Vanholder RC, et al. Sodium bicarbonate versus THAM in ICU patients with mild metabolic acidosis. J Nephrol. 2005;18:303–7.

    CAS  PubMed  Google Scholar 

  64. White BC, Tintinalli JE. Effects of sodium bicarbonate administration during cardiopulmonary resuscitation. J Am Collage Emerg Phys. 1977;6:187–90.

    Article  CAS  Google Scholar 

  65. Nahas GG, Sutin KM, Fermon C, et al. Guidelines for the treatment of acidaemia with THAM. Drugs. 1998;55:191–224.

    Article  CAS  PubMed  Google Scholar 

  66. Jacobson HR. Medullary collecting duct acidification. Effects of potassium, HCO3 concentration, and pCO2. J Clin Invest. 1984;74:2107–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Schwartz GJ. Na+-dependent H+ efflux from proximal tubule: evidence for reversible Na+-H+ exchange. Am J Physiol. 1981;241:F380–5.

    CAS  PubMed  Google Scholar 

  68. Madias NE, Adrogue HJ. Cross-talk between two organs: how the kidney responds to disruption of acid-base balance by the lung. Nephron Physiol. 2003;93:p61–6.

    Article  CAS  PubMed  Google Scholar 

  69. Schwartz GJ, Al-Awqati Q. Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J Clin Invest. 1985;75:1638–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Brackett Jr NC, Cohen JJ, Schwartz WB. Carbon dioxide titration curve of normal man. Effect of increasing degrees of acute hypercapnia on acid-base equilibrium. N Engl J Med. 1965;272:6–12.

    Article  PubMed  Google Scholar 

  71. Schwartz WB, Cohen JJ. The nature of the renal response to chronic disorders of acid-base equilibrium. Am J Med. 1978;64:417–28.

    Article  CAS  PubMed  Google Scholar 

  72. Krapf R, Beeler I, Hertner D, Hulter HN. Chronic respiratory alkalosis. The effect of sustained hyperventilation on renal regulation of acid-base equilibrium. N Engl J Med. 1991;324:1394–401.

    Article  CAS  PubMed  Google Scholar 

  73. Wong HR, Chundu KR. Metabolic alkalosis in children undergoing cardiac surgery. Crit Care Med. 1993;21:884–7.

    Article  CAS  PubMed  Google Scholar 

  74. Mauri S, Pedroli G, Rudeberg A, Laux-End R, Monotti R, Bianchetti MG. Acute metabolic alkalosis in cystic fibrosis: prospective study and review of the literature. Miner Electrolyte Metab. 1997;23:33–7.

    CAS  PubMed  Google Scholar 

  75. Fustik S, Pop-Jordanova N, Slaveska N, Koceva S, Efremov G. Metabolic alkalosis with hypoelectrolytemia in infants with cystic fibrosis. Pediatr Int. 2002;44:289–92.

    Article  PubMed  Google Scholar 

  76. Hebert SC. Bartter syndrome. Curr Opin Nephrol Hypertens. 2003;12:527–32.

    Article  PubMed  Google Scholar 

  77. Naesens M, Steels P, Verberckmoes R, Vanrenterghem Y, Kuypers D. Bartter’s and Gitelman’s syndromes: from gene to clinic. Nephron Physiol. 2004;96:p65–78.

    Article  PubMed  Google Scholar 

  78. Schmidt H, Kabesch M, Schwarz HP, Kiess W. Clinical, biochemical and molecular genetic data in five children with Gitelman’s syndrome. Horm Metab Res. 2001;33:354–7.

    Article  CAS  PubMed  Google Scholar 

  79. Perez GO, Oster JR, Rogers A. Acid-base disturbances in gastrointestinal disease. Dig Dis Sci. 1987;32:1033–43.

    Article  CAS  PubMed  Google Scholar 

  80. Bosch JP, Goldstein MH, Levitt MF, Kahn T. Effect of chronic furosemide administration on hydrogen and sodium excretion in the dog. Am J Physiol. 1977;232:F397–404.

    CAS  PubMed  Google Scholar 

  81. van Buren M, Rabelink TJ, van Rijn HJ, Koomans HA. Effects of acute NaCl, KCl and KHCO3 loads on renal electrolyte excretion in humans. Clin Sci (Lond). 1992;83:567–74.

    Article  Google Scholar 

  82. Schwartz GJ. Physiology and molecular biology of renal carbonic anhydrase. J Nephrol. 2002;15 Suppl 5:S61–74.

    CAS  PubMed  Google Scholar 

  83. Khanna A, Kurtzman NA. Metabolic alkalosis. Respir Care. 2001;46:354–65.

    CAS  PubMed  Google Scholar 

  84. Arruda JA, Kurtzman NA. Mechanisms and classification of deranged distal urinary acidification. Am J Physiol. 1980;239:F515–23.

    CAS  PubMed  Google Scholar 

  85. Wagner CA, Kovacikova J, Stehberger PA, Winter C, Benabbas C, Mohebbi N. Renal acid-base transport: old and new players. Nephron Physiol. 2006;103:p1–6.

    Article  PubMed  Google Scholar 

  86. Roberts KE, Randall HT, Sanders HL, Hood M. Effects of potassium on renal tubular reabsorption of bicarbonate. J Clin Invest. 1955;34:666–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Korosi A, Kahn T, Kalb T, Uribarri J. Marked hyperlactatemia associated with severe alkalemia in a patient with thrombotic thrombocytopenic purpura. Am J Kidney Dis. 2000;36:E6.

    Article  CAS  PubMed  Google Scholar 

  88. Jacobson HR, Seldin DW. On the generation, maintenance, and correction of metabolic alkalosis. Am J Physiol. 1983;245:F425–32.

    CAS  PubMed  Google Scholar 

  89. Mazur JE, Devlin JW, Peters MJ, Jankowski MA, Iannuzzi MC, Zarowitz BJ. Single versus multiple doses of acetazolamide for metabolic alkalosis in critically ill medical patients: a randomized, double-blind trial. Crit Care Med. 1999;27:1257–61.

    Article  CAS  PubMed  Google Scholar 

  90. Marik PE, Kussman BD, Lipman J, Kraus P. Acetazolamide in the treatment of metabolic alkalosis in critically ill patients. Heart Lung. 1991;20:455–9.

    CAS  PubMed  Google Scholar 

  91. Amlal H, Habo K, Soleimani M. Potassium deprivation upregulates expression of renal basolateral Na(+)-HCO(3)(-) cotransporter (NBC-1). Am J Physiol Renal Physiol. 2000;279:F532–43.

    CAS  PubMed  Google Scholar 

  92. Dave-Sharma S, Wilson RC, Harbison MD, et al. Examination of genotype and phenotype relationships in 14 patients with apparent mineralocorticoid excess. J Clin Endocrinol Metab. 1998;83:2244–54.

    CAS  PubMed  Google Scholar 

  93. Colussi G, Rombola G, De Ferrari ME, Macaluso M, Minetti L. Correction of hypokalemia with antialdosterone therapy in Gitelman’s syndrome. Am J Nephrol. 1994;14:127–35.

    Article  CAS  PubMed  Google Scholar 

  94. Ramsay LE, Hettiarachchi J, Fraser R, Morton JJ. Amiloride, spironolactone, and potassium chloride in thiazide-treated hypertensive patients. Clin Pharmacol Ther. 1980;27:533–43.

    Article  CAS  PubMed  Google Scholar 

  95. Vania A, Tucciarone L, Mazzeo D, Capodaglio PF, Cugini P. Liddle’s syndrome: a 14-year follow-up of the youngest diagnosed case. Pediatr Nephrol. 1997;11:7–11.

    Article  CAS  PubMed  Google Scholar 

  96. Korkmaz A, Yildirim E, Aras N, Ercan F. Hydrochloric acid for treating metabolic alkalosis. Jpn J Surg. 1989;19:519–23.

    Article  CAS  PubMed  Google Scholar 

  97. McLaughlin ML, Kassirer JP. Rational treatment of acid-base disorders. Drugs. 1990;39:841–55.

    Article  CAS  PubMed  Google Scholar 

  98. Nasimi A, Cardona J, Berthier M, Oriot D. Hydrochloric acid infusion for treatment of severe metabolic alkalosis in a neonate. Clin Pediatr (Phila). 1996;35:271–2.

    Article  CAS  Google Scholar 

  99. Giebisch G, Berger L, Pitts RF. The extrarenal response to acute acid-base disturbances of respiratory origin. J Clin Invest. 1955;34:231–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Arbus GS, Herbert LA, Levesque PR, Etsten BE, Schwartz WB. Characterization and clinical application of the “significance band” for acute respiratory alkalosis. N Engl J Med. 1969;280:117–23.

    Article  CAS  PubMed  Google Scholar 

  101. Gledhill N, Beirne GJ, Dempsey JA. Renal response to short-term hypocapnia in man. Kidney Int. 1975;8:376–84.

    Article  CAS  PubMed  Google Scholar 

  102. Gennari FJ, Goldstein MB, Schwartz WB. The nature of the renal adaptation to chronic hypocapnia. J Clin Invest. 1972;51:1722–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Cohen JJ, Madias NE, Wolf CJ, Schwartz WB. Regulation of acid-base equilibrium in chronic hypocapnia. Evidence that the response of the kidney is not geared to the defense of extracellular (H+). J Clin Invest. 1976;57:1483–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Schwartz WB, Brackett Jr NC, Cohen JJ. The response of extracellular hydrogen ion concentration to graded degrees of chronic hypercapnia: the physiologic limits of the defense of Ph. J Clin Invest. 1965;44:291–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. DuBose T. Acid-base disorders. In: Brenner BM, editor. The kidney. 7th ed. Philadelphia: Saunders/Elsevier; 2004. p. 2870.

    Google Scholar 

  106. Temple AR. Pathophysiology of aspirin overdosage toxicity, with implications for management. Pediatrics. 1978;62:873–6.

    CAS  PubMed  Google Scholar 

  107. Rennke H DB. Acid-base physiology and metabolic alkalosis. In: Renal pathophysiology: the essentials. 2nd ed. Boston: Lippincott Williams & Wilkins 2007. p. 127–156.

    Google Scholar 

  108. Vormann J, Remer T. Dietary, metabolic, physiologic, and disease-related aspects of acid-base balance: foreword to the contributions of the second International acid-base symposium. J Nutr. 2008;138:413S–4.

    CAS  PubMed  Google Scholar 

  109. Remer T, Manz F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am J Clin Nutr. 1994;59:1356–61.

    CAS  PubMed  Google Scholar 

  110. Kalhoff H, Manz F. Nutrition, acid-base status and growth in early childhood. Eur J Nutr. 2001;40:221–30.

    Article  CAS  PubMed  Google Scholar 

  111. Alexy U, Kersting M, Remer T. Potential renal acid load in the diet of children and adolescents: impact of food groups, age and time trends. Public Health Nutr. 2008;11:300–6.

    Article  PubMed  Google Scholar 

  112. Prynne CJ, Ginty F, Paul AA, et al. Dietary acid-base balance and intake of bone-related nutrients in Cambridge teenagers. Eur J Clin Nutr. 2004;58:1462–71.

    Article  CAS  PubMed  Google Scholar 

  113. Remer T, Dimitriou T, Manz F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am J Clin Nutr. 2003;77:1255–60.

    CAS  PubMed  Google Scholar 

  114. Frassetto LA, Morris Jr RC, Sebastian A. Effect of age on blood acid-base composition in adult humans: role of age-related renal functional decline. Am J Physiol. 1996;271:F1114–22.

    CAS  PubMed  Google Scholar 

  115. Goodman AD, Lemann Jr J, Lennon EJ, Relman AS. Production, excretion, and net balance of fixed acid in patients with renal acidosis. J Clin Invest. 1965;44:495–506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Manz F, Kalhoff H, Remer T. Renal acid excretion in early infancy. Pediatr Nephrol. 1997;11:231–43.

    Article  CAS  PubMed  Google Scholar 

  117. Rector Jr FC. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Physiol. 1983;244:F461–71.

    PubMed  Google Scholar 

  118. Twombley K, Gattineni J, Bobulescu IA, Dwarakanath V, Baum M. Effect of metabolic acidosis on neonatal proximal tubule acidification. Am J Physiol Regul Integr Comp Physiol. 2010;299:18.

    Article  CAS  Google Scholar 

  119. Joseph C, Twombley K, Gattineni J, Zhang Q, Dwarakanath V, Baum M. Acid increases NHE8 surface expression and activity in NRK cells. Am J Physiol Renal Physiol. 2012;302:16.

    Article  CAS  Google Scholar 

  120. Baum M. Neonatal rabbit juxtamedullary proximal convoluted tubule acidification. J Clin Invest. 1990;85:499–506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Schwartz GJ, Evan AP. Development of solute transport in rabbit proximal tubule. III. Na-K-ATPase activity. Am J Physiol. 1984;246:F845–52.

    CAS  PubMed  Google Scholar 

  122. Karashima S, Hattori S, Ushijima T, Furuse A, Nakazato H, Matsuda I. Developmental changes in carbonic anhydrase II in the rat kidney. Pediatr Nephrol. 1998;12:263–8.

    Article  CAS  PubMed  Google Scholar 

  123. Winkler CA, Kittelberger AM, Watkins RH, Maniscalco WM, Schwartz GJ. Maturation of carbonic anhydrase IV expression in rabbit kidney. Am J Physiol Renal Physiol. 2001;280:F895–903.

    CAS  PubMed  Google Scholar 

  124. Schwartz GJ, Olson J, Kittelberger AM, Matsumoto T, Waheed A, Sly WS. Postnatal development of carbonic anhydrase IV expression in rabbit kidney. Am J Physiol. 1999;276:F510–20.

    CAS  PubMed  Google Scholar 

  125. Lonnerholm G, Wistrand PJ. Carbonic anhydrase in the human fetal kidney. Pediatr Res. 1983;17:390–7.

    Article  CAS  PubMed  Google Scholar 

  126. Goldstein L. Renal ammonia and acid excretion in infant rats. Am J Physiol. 1970;218:1394–8.

    CAS  PubMed  Google Scholar 

  127. Matsumoto T, Fejes-Toth G, Schwartz GJ. Postnatal differentiation of rabbit collecting duct intercalated cells. Pediatr Res. 1996;39:1–12.

    Article  CAS  PubMed  Google Scholar 

  128. Benyajati S, Goldstein L. Renal glutaminase adaptation and ammonia excretion in infant rats. Am J Physiol. 1975;228:693–8.

    CAS  PubMed  Google Scholar 

  129. Chan JC. Acid-base disorders and the kidney. Adv Pediatr. 1983;30:401–71.

    CAS  PubMed  Google Scholar 

  130. McSherry E, Morris Jr RC. Attainment and maintenance of normal stature with alkali therapy in infants and children with classic renal tubular acidosis. J Clin Invest. 1978;61:509–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Challa A, Krieg Jr RJ, Thabet MA, Veldhuis JD, Chan JC. Metabolic acidosis inhibits growth hormone secretion in rats: mechanism of growth retardation. Am J Physiol. 1993;265:E547–53.

    CAS  PubMed  Google Scholar 

  132. Hanna JDCA, Chan JCM, Han VKM. Insulin-like growth factor-1 gene expression in the tibial epiphyseal growth plate of the acidotic and with nutritional limited rats. Pediatr Res. 1995;37:363A.

    Article  Google Scholar 

  133. Krieger NS, Frick KK, Bushinsky DA. Mechanism of acid-induced bone resorption. Curr Opin Nephrol Hypertens. 2004;13:423–36.

    Article  CAS  PubMed  Google Scholar 

  134. Lemann Jr J, Lennon EJ, Goodman AD, Litzow JR, Relman AS. The net balance of acid in subjects given large loads of acid or alkali. J Clin Invest. 1965;44:507–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Lemann Jr J, Litzow JR, Lennon EJ. The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. J Clin Invest. 1966;45:1608–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Litzow JR, Lemann Jr J, Lennon EJ. The effect of treatment of acidosis on calcium balance in patients with chronic azotemic renal disease. J Clin Invest. 1967;46:280–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Cochran M, Wilkinson R. Effect of correction of metabolic acidosis on bone mineralisation rates in patients with renal osteomalacia. Nephron. 1975;15:98–110.

    Article  CAS  PubMed  Google Scholar 

  138. Bleich HL, Moore MJ, Lemann Jr J, Adams ND, Gray RW. Urinary calcium excretion in human beings. N Engl J Med. 1979;301:535–41.

    Article  CAS  PubMed  Google Scholar 

  139. Lefebvre A, de Vernejoul MC, Gueris J, Goldfarb B, Graulet AM, Morieux C. Optimal correction of acidosis changes progression of dialysis osteodystrophy. Kidney Int. 1989;36:1112–8.

    Article  CAS  PubMed  Google Scholar 

  140. Lemann Jr J, Bushinsky DA, Hamm LL. Bone buffering of acid and base in humans. Am J Physiol Renal Physiol. 2003;285:F811–32.

    Article  CAS  PubMed  Google Scholar 

  141. Rodriguez-Soriano J, Vallo A. Renal tubular acidosis. Pediatr Nephrol. 1990;4:268–75.

    Article  CAS  PubMed  Google Scholar 

  142. Halperin ML, Jungas RL. Metabolic production and renal disposal of hydrogen ions. Kidney Int. 1983;24:709–13.

    Article  CAS  PubMed  Google Scholar 

  143. Warnock DG. Uremic acidosis. Kidney Int. 1988;34:278–87.

    Article  CAS  PubMed  Google Scholar 

  144. Hakim RM, Lazarus JM. Biochemical parameters in chronic renal failure. Am J Kidney Dis. 1988;11:238–47.

    Article  CAS  PubMed  Google Scholar 

  145. Bailey JL. Metabolic acidosis: an unrecognized cause of morbidity in the patient with chronic kidney disease. Kidney Int Suppl. 2005;96:S15–23.

    Article  CAS  PubMed  Google Scholar 

  146. Kraut JA, Kurtz I. Metabolic acidosis of CKD: diagnosis, clinical characteristics, and treatment. Am J Kidney Dis. 2005;45:978–93.

    Article  CAS  PubMed  Google Scholar 

  147. Uribarri J, Douyon H, Oh MS. A re-evaluation of the urinary parameters of acid production and excretion in patients with chronic renal acidosis. Kidney Int. 1995;47:624–7.

    Article  CAS  PubMed  Google Scholar 

  148. Welbourne T, Weber M, Bank N. The effect of glutamine administration on urinary ammonium excretion in normal subjects and patients with renal disease. J Clin Invest. 1972;51:1852–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Widmer B, Gerhardt RE, Harrington JT, Cohen JJ. Serum electrolyte and acid base composition. The influence of graded degrees of chronic renal failure. Arch Intern Med. 1979;139:1099–102.

    Article  CAS  PubMed  Google Scholar 

  150. Hsu CY, Chertow GM. Elevations of serum phosphorus and potassium in mild to moderate chronic renal insufficiency. Nephrol Dial Transplant. 2002;17:1419–25.

    Article  CAS  PubMed  Google Scholar 

  151. Schambelan M, Sebastian A, Biglieri EG. Prevalence, pathogenesis, and functional significance of aldosterone deficiency in hyperkalemic patients with chronic renal insufficiency. Kidney Int. 1980;17:89–101.

    Article  CAS  PubMed  Google Scholar 

  152. Jr E. Hydrogen ion turnover in health and disease. Ann Intern Med. 1962;57:660–84.

    Article  Google Scholar 

  153. Wallia R, Greenberg A, Piraino B, Mitro R, Puschett JB. Serum electrolyte patterns in end-stage renal disease. Am J Kidney Dis. 1986;8:98–104.

    Article  CAS  PubMed  Google Scholar 

  154. Kraut JA. Disturbances of acid-base balance and bone disease in end-stage renal disease. Semin Dial. 2000;13:261–6.

    Article  CAS  PubMed  Google Scholar 

  155. Uribarri J, Zia M, Mahmood J, Marcus RA, Oh MS. Acid production in chronic hemodialysis patients. J Am Soc Nephrol. 1998;9:114–20.

    CAS  PubMed  Google Scholar 

  156. Sebastian A, Schambelan M, Lindenfeld S, Morris Jr RC. Amelioration of metabolic acidosis with fludrocortisone therapy in hyporeninemic hypoaldosteronism. N Engl J Med. 1977;297:576–83.

    Article  CAS  PubMed  Google Scholar 

  157. Kurtz I, Maher T, Hulter HN, Schambelan M, Sebastian A. Effect of diet on plasma acid-base composition in normal humans. Kidney Int. 1983;24:670–80.

    Article  CAS  PubMed  Google Scholar 

  158. Uribarri J, Levin NW, Delmez J, et al. Association of acidosis and nutritional parameters in hemodialysis patients. Am J Kidney Dis. 1999;34:493–9.

    Article  CAS  PubMed  Google Scholar 

  159. Kopple JD, Kalantar-Zadeh K, Mehrotra R. Risks of chronic metabolic acidosis in patients with chronic kidney disease. Kidney Int Suppl. 2005;95:S21–7.

    Article  PubMed  Google Scholar 

  160. Kovesdy CP, Anderson JE, Kalantar-Zadeh K. Association of serum bicarbonate levels with mortality in patients with non-dialysis-dependent CKD. Nephrol Dial Transplant. 2009;24:1232–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Oh MS, Uribarri J, Weinstein J, et al. What unique acid-base considerations exist in dialysis patients? Semin Dial. 2004;17:351–64.

    Article  PubMed  Google Scholar 

  162. Kovacic V, Roguljic L, Kovacic V. Metabolic acidosis of chronically hemodialyzed patients. Am J Nephrol. 2003;23:158–64.

    Article  CAS  PubMed  Google Scholar 

  163. Frassetto LA, Hsu CY. Metabolic acidosis and progression of chronic kidney disease. J Am Soc Nephrol. 2009;20(9):1869–70. doi:10.1681/ASN.2009070710. Epub 2009 Aug 20.

    Article  PubMed  Google Scholar 

  164. KDIGO. Chapter 3: Management of progression and complications of CKD. Kidney Int Suppl. 2013;3:73–90.

    Google Scholar 

  165. Ambuhl PM. Posttransplant metabolic acidosis: a neglected factor in renal transplantation? Curr Opin Nephrol Hypertens. 2007;16:379–87.

    Article  CAS  PubMed  Google Scholar 

  166. Yakupoglu HY, Corsenca A, Wahl P, Wuthrich RP, Ambuhl PM. Posttransplant acidosis and associated disorders of mineral metabolism in patients with a renal graft. Transplantation. 2007;84:1151–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Mak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Yorgin, P.D., Ingulli, E.G., Mak, R.H. (2016). Physiology of the Developing Kidney: Acid-Base Homeostasis and Its Disorders. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics