Skip to main content

Nephronophthisis and Medullary Cystic Kidney Disease in Children

  • Reference work entry
  • First Online:
Pediatric Nephrology
  • 7190 Accesses

Abstract

Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease that constitutes one of the most frequent genetic causes for end-stage kidney disease (ESKD) in the first three decades of life [47, 68, 69 148].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ala-Mello S, Kivivuori SM, Ronnholm KA, et al. Mechanism underlying early anaemia in children with familial juvenile nephronophthisis. Pediatr Nephrol. 1996;10(5):578–81.

    Article  CAS  PubMed  Google Scholar 

  2. Amirou M, Bourdat-Michel G, Pinel N, et al. Successful renal transplantation in Jeune syndrome type 2. Pediatr Nephrol. 1998;12(4):293–4.

    Article  CAS  PubMed  Google Scholar 

  3. Andersen JS, Wilkinson CJ, Mayor T, et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 2003;426(6966):570–4.

    Article  CAS  PubMed  Google Scholar 

  4. Antignac C, Arduy CH, Beckmann JS, et al. A gene for familial juvenile nephronophthisis (recessive medullary cystic kidney disease) maps to chromosome 2p. Nat Genet. 1993;3(4):342–5.

    Article  CAS  PubMed  Google Scholar 

  5. Attanasio M, Uhlenhaut NH, Sousa VH, et al. Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nat Genet. 2007;39(8):1018–24.

    Article  CAS  PubMed  Google Scholar 

  6. Baala L, Audollent S, Martinovic J, et al. Pleiotropic effects of CEP290 (NPHP6) mutations extend to Meckel syndrome. Am J Hum Genet. 2007;81(1):170–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Badano JL, Kim JC, Hoskins BE, et al. Heterozygous mutations in BBS1, BBS2 and BBS6 have a potential epistatic effect on Bardet-Biedl patients with two mutations at a second BBS locus. Hum Mol Genet. 2003;12(14):1651–9.

    Article  CAS  PubMed  Google Scholar 

  8. Badano JL, Teslovich TM, Katsanis N. The centrosome in human genetic disease. Nat Rev Genet. 2005;6(3):194–205.

    Article  CAS  PubMed  Google Scholar 

  9. Bae YK, Qin H, Knobel KM, et al. General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia. Development. 2006;133(19):3859–70.

    Article  CAS  PubMed  Google Scholar 

  10. Bae YK, Lyman-Gingerich J, Barr MM, Knobel KM. Identification of genes involved in the ciliary trafficking of C. elegans PKD-2. Dev Dyn. 2008;273(8):2021–9.

    Article  Google Scholar 

  11. Barr MM, DeModena J, Braun D, et al. The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr Biol. 2001;11(17):1341–6.

    Article  CAS  PubMed  Google Scholar 

  12. Beales PL, Badano JL, Ross AJ, et al. Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non-Mendelian Bardet-Biedl syndrome. Am J Hum Genet. 2003;72(5):1187–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Beales PL, Bland E, Tobin JL, et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet. 2007;39(6):727–9.

    Article  CAS  PubMed  Google Scholar 

  14. Benzing T, Walz G. Cilium-generated signaling: a cellular GPS? Curr Opin Nephrol Hypertens. 2006;15(3):245–9.

    Article  CAS  PubMed  Google Scholar 

  15. Benzing T, Gerke P, Hopker K, et al. Nephrocystin interacts with Pyk2, p130(Cas), and tensin and triggers phosphorylation of Pyk2. Proc Natl Acad Sci U S A. 2001;98(17):9784–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bergmann C, Fliegauf M, Bruchle NO, et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet. 2008;82(4):959–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Betts PR, Forest-Hay I. Juvenile nephronophthisis. Lancet. 1973;2:475–8.

    Article  CAS  PubMed  Google Scholar 

  18. Betz R, Rensing C, Otto E, et al. Children with ocular motor apraxia type Cogan carry deletions in the gene (NPHP1) for juvenile nephronophthisis. J Pediatr. 2000;136(6):828–31.

    CAS  PubMed  Google Scholar 

  19. Bisgrove BW, Yost HJ. The roles of cilia in developmental disorders and disease. Development. 2006;133(21):4131–43.

    Article  CAS  PubMed  Google Scholar 

  20. Bleyer AJ, Hart TC. Medullary cystic kidney disease type 2. Am J Kidney Dis. 2004;43(6):1142; author reply 1142–3.

    Article  PubMed  Google Scholar 

  21. Blowey DL, Querfeld U, Geary D, et al. Ultrasound findings in juvenile nephronophthisis. Pediatr Nephrol. 1996;10(1):22–4.

    Article  CAS  PubMed  Google Scholar 

  22. Bodaghi E, Honarmand MT, Ahmadi M. Infantile nephronophthisis. Int J Pediatr Nephrol. 1987;8(4):207–10.

    CAS  PubMed  Google Scholar 

  23. Boichis H, Passwell J, David R, Miller H. Congenital hepatic fibrosis and nephronophthisis. A family study. Q J Med. 1973;42(165):221–33.

    CAS  PubMed  Google Scholar 

  24. Bukanov NO, Smith LA, Klinger KW, et al. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature. 2006;444(7121):949–52.

    Article  CAS  PubMed  Google Scholar 

  25. Burke JR, Inglis JA, Craswell PW, et al. Juvenile nephronophthisis and medullary cystic disease – the same disease (report of a large family with medullary cystic disease associated with gout and epilepsy). Clin Nephrol. 1982;18(1):1–8.

    CAS  PubMed  Google Scholar 

  26. Cacchi R, Ricci V. Sopra una rara e forse ancora non descritta effezione cistica della piramidi renali (“rene a spugna”). Atti Soc Ital Urol. 1948;5:59.

    Google Scholar 

  27. Cantani A, Bamonte G, Ceccoli D. Familial juvenile nephronophthisis. Clin Pediatr. 1986;25:90–5.

    Article  CAS  Google Scholar 

  28. Caridi G, Murer L, Bellantuono R, et al. Renal-retinal syndromes: association of retinal anomalies and recessive nephronophthisis in patients with homozygous deletion of the NPH1 locus. Am J Kidney Dis. 1998;32(6):1059–62.

    Article  CAS  PubMed  Google Scholar 

  29. Castori M, Valente EM, Donati MA, et al. NPHP1 gene deletion is a rare cause of Joubert syndrome related disorders. J Med Genet. 2005;42(2), e9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, Wang H, Hurd TW, Zhou W, Cluckey A, Gee HY, Ramaswami G, Hong CJ, Hamilton BA, Cervenka I, Ganji RS, Bryja V, Arts HH, van Reeuwijk J, Oud MM, Letteboer SJ, Roepman R, Husson H, Ibraghimov-Beskrovnaya O, Yasunaga T, Walz G, Eley L, Sayer JA, Schermer B, Liebau MC, Benzing T, Le Corre S, Drummond I, Janssen S, Allen SJ, Natarajan S, O’Toole JF, Attanasio M, Saunier S, Antignac C, Koenekoop RK, Ren H, Lopez I, Nayir A, Stoetzel C, Dollfus H, Massoudi R, Gleeson JG, Andreoli SP, Doherty DG, Lindstrad A, Golzio C, Katsanis N, Pape L, Abboud EB, Al-Rajhi AA, Lewis RA, Omran H, Lee EY, Wang S, Sekiguchi JM, Saunders R, Johnson CA, Garner E, Vanselow K, Andersen JS, Shlomai J, Nurnberg G, Nurnberg P, Levy S, Smogorzewska A, Otto EA, Hildebrandt F. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012;150(3):533–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Chamberlin BC, Hagge WW, Stickler GB. Juvenile nephronophthisis and medullary cystic disease. Mayo Clin Proc. 1977;52(8):485–91.

    CAS  PubMed  Google Scholar 

  32. Chance PF, Cavalier L, Satran D, et al. Clinical nosologic and genetic aspects of Joubert and related syndromes. J Child Neurol. 1999;14(10):660–6; discussion 669–72.

    Article  CAS  PubMed  Google Scholar 

  33. Chang B, Khanna H, Hawes N, et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet. 2006;15(11):1847–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Choi HJ, Lin JR, Vannier JB, Slaats GG, Kile AC, Paulsen RD, Manning DK, Beier DR, Giles RH, Boulton SJ, Cimprich KA. NEK8 links the ATR-regulated replication stress response and S phase CDK activity to renal ciliopathies. Mol Cell. 2013;51(4):423-39. doi:10.1016/j.molcel.2013.08.006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Christodoulou K, Tsingis M, Stavrou C, et al. Chromosome 1 localization of a gene for autosomal dominant medullary cystic kidney disease. Hum Mol Genet. 1998;7(5):905–11.

    Article  CAS  PubMed  Google Scholar 

  36. Costet C, Betis F, Berard E, et al. Pigmentosum retinis and tubulo-interstitial nephronophtisis in Sensenbrenner syndrome: a case report. J Fr Ophtalmol. 2000;23(2):158–60.

    CAS  PubMed  Google Scholar 

  37. Dahan K, Fuchshuber A, Adamis S, et al. Familial juvenile hyperuricemic nephropathy and autosomal dominant medullary cystic kidney disease type 2: two facets of the same disease? J Am Soc Nephrol. 2001;12(11):2348–57.

    CAS  PubMed  Google Scholar 

  38. Dahan K, Devuyst O, Smaers M, et al. A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin. J Am Soc Nephrol. 2003;14(11):2883–93.

    Article  CAS  PubMed  Google Scholar 

  39. Delaney V, Mullaney J, Bourke E. Juvenile nephronophthisis, congenital hepatic fibrosis and retinal hypoplasia in twins. Q J Med. 1978;47(187):281–90.

    CAS  PubMed  Google Scholar 

  40. Delous M, Baala L, Salomon R, et al. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat Genet. 2007;39(7):875–81.

    Article  CAS  PubMed  Google Scholar 

  41. den Hollander AI, Koenekoop RK, Yzer S, et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet. 2006;79(3):556–61.

    Article  Google Scholar 

  42. Di Rocco M, Picco P, Arslanian A, et al. Retinitis pigmentosa, hypopituitarism, nephronophthisis, and mild skeletal dysplasia (RHYNS): a new syndrome? Am J Med Genet. 1997;73(1):1–4.

    Article  PubMed  Google Scholar 

  43. Donaldson MD, Warner AA, Trompeter RS, et al. Familial juvenile nephronophthisis, Jeune’s syndrome, and associated disorders. Arch Dis Child. 1985;60(5):426–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Donaldson JC, Dempsey PJ, Reddy S, et al. Crk-associated substrate p130(Cas) interacts with nephrocystin and both proteins localize to cell-cell contacts of polarized epithelial cells. Exp Cell Res. 2000;256(1):168–78.

    Article  CAS  PubMed  Google Scholar 

  45. Donaldson JC, Dise RS, Ritchie MD, Hanks SK. Nephrocystin-conserved domains involved in targeting to epithelial cell-cell junctions, interaction with filamins, and establishing cell polarity. J Biol Chem. 2002;277(32):29028–35.

    Article  CAS  PubMed  Google Scholar 

  46. Efimenko E, Bubb K, Mak HY, et al. Analysis of xbx genes in C. Elegans Dev. 2005;132(8):1923–34.

    CAS  Google Scholar 

  47. Fanconi G, Hanhart E, Albertini A. Die familiäre juvenile nephronophthise. Helv Pediatr Acta. 1951;6:1–49.

    CAS  Google Scholar 

  48. Fischer E, Legue E, Doyen A, et al. Defective planar cell polarity in polycystic kidney disease. Nat Genet. 2006;38(1):21–3.

    Article  CAS  PubMed  Google Scholar 

  49. Fliegauf M, Horvath J, von Schnakenburg C, et al. Nephrocystin specifically localizes to the transition zone of renal and respiratory cilia and photoreceptor connecting cilia. J Am Soc Nephrol. 2006;17(9):2424–33.

    Article  CAS  PubMed  Google Scholar 

  50. Fuchshuber A, Deltas CC, Berthold S, et al. Autosomal dominant medullary cystic kidney disease: evidence of gene locus heterogeneity. Nephrol Dial Transplant. 1998;13(8):1955–7.

    Article  CAS  PubMed  Google Scholar 

  51. Fuchshuber A, Kroiss S, Karle S, et al. Refinement of the gene locus for autosomal dominant medullary cystic kidney disease type 1 (MCKD1) and construction of a physical and partial transcriptional map of the region. Genomics. 2001;72(3):278–84.

    Article  CAS  PubMed  Google Scholar 

  52. Fyhrquist FY, Klockars M, Gordin A, et al. Hyperreninemia, lysozymuria, and erythrocytosis in Fanconi syndrome with medullary cystic kidney. Acta Med Scand. 1980;207(5):359–65.

    CAS  PubMed  Google Scholar 

  53. Gardner KD. Evolution of clinical signs in adult-onset cystic disease of the renal medulla. Ann Intern Med. 1971;74:47–54.

    Article  PubMed  Google Scholar 

  54. Gardner Jr KD. Juvenile nephronophthisis and renal medullary cystic disease. Perspect Nephrol Hypertens. 1976;4:173–85.

    PubMed  Google Scholar 

  55. Garel LA, Habib R, Pariente D, et al. Juvenile nephronophthisis: sonographic appearance in children with severe uremia. Radiology. 1984;151(1):93–5.

    Article  CAS  PubMed  Google Scholar 

  56. Gattone 2nd VH, Wang X, Harris PC, Torres VE. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. 2003;9(10):1323–6.

    Article  CAS  PubMed  Google Scholar 

  57. Gee HY, Saisawat P, Ashraf S, Hurd TW, Vega-Warner V, Fang H, Beck BB, Gribouval O, Zhou W, Diaz KA, Natarajan S, Wiggins RC, Lovric S, Chernin G, Schoeb DS, Ovunc B, Frishberg Y, Soliman NA, Fathy HM, Goebel H, Hoefele J, Weber LT, Innis JW, Faul C, Han Z, Washburn J, Antignac C, Levy S, Otto EA, Hildebrandt F. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest. 2013;123(8):3243-53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Germino GG. Linking cilia to Wnts. Nat Genet. 2005;37(5):455–7.

    Article  CAS  PubMed  Google Scholar 

  59. Giselson N, Heinegard D, Holmberg CG, et al. Renal medullary cystic disease or familial juvenile nephronophthisis: a renal tubular disease. Biochemical findings in two siblings. Am J Med. 1970;48(2):174–84.

    Article  CAS  PubMed  Google Scholar 

  60. Gleeson JG, Keeler LC, Parisi MA, et al. Molar tooth sign of the midbrain-hindbrain junction: occurrence in multiple distinct syndromes. Am J Med Genet. 2004;125A(2):125–34; discussion 117.

    Article  PubMed  Google Scholar 

  61. Goldman SH, Walker SR, Merigan Jr TC, et al. Hereditary occurrence of cystic disease of the renal medulla. N Engl J Med. 1966;274(18):984–92.

    Article  CAS  PubMed  Google Scholar 

  62. Gretz N. Rate of deterioration of renal function in juvenile nephronophthisis. Pediatr Nephrol. 1989;3:56–60.

    Article  CAS  PubMed  Google Scholar 

  63. Haider NB, Carmi R, Shalev H, et al. A Bedouin kindred with infantile nephronophthisis demonstrates linkage to chromosome 9 by homozygosity mapping. Am J Hum Genet. 1998;63(5):1404–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Halbritter J, Bizet AA, Schmidts M, Porath JD, Braun DA, Gee HY, McInerney-Leo AM, Krug P, Filhol E, Davis EE, Airik R, Czarnecki PG, Lehman AM, Trnka P, Nitschké P, Bole-Feysot C, Schueler M, Knebelmann B, Burtey S, Szabó AJ, Tory K, Leo PJ, Gardiner B, McKenzie FA, Zankl A, Brown MA, Hartley JL, Maher ER, Li C, Leroux MR, Scambler PJ, Zhan SH, Jones SJ, Kayserili H, Tuysuz B, Moorani KN, Constantinescu A, Krantz ID, Kaplan BS, Shah JV, UK10K Consortium, Hurd TW, Doherty D, Katsanis N, Duncan EL, Otto EA, Beales PL, Mitchison HM, Saunier S, Hildebrandt F. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet. 2013;93(5):915–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Hart TC, Gorry MC, Hart PS, et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet. 2002;39(12):882–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Hateboer N, Gumbs C, Teare MD, et al. Confirmation of a gene locus for medullary cystic kidney disease (MCKD2) on chromosome 16p12. Kidney Int. 2001;60(4):1233–9.

    Article  CAS  PubMed  Google Scholar 

  67. Hildebrandt F. Pediatric nephrology. Baltimore: Williams & Wilkins; 1999.

    Google Scholar 

  68. Hildebrandt F, Otto EA. Primary cilia: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet. 2005;6(12):928–40.

    Google Scholar 

  69. Hildebrandt F, Zhou W. Nephronophthisis-associated ciliopathies. J Am Soc Nephrol. 2007;18(6):1855–71.

    Article  CAS  PubMed  Google Scholar 

  70. Hildebrandt F, Waldherr R, Kutt R, Brandis M. The nephronophthisis complex: clinical and genetic aspects. Clin Investig. 1992;70(9):802–8.

    Article  CAS  PubMed  Google Scholar 

  71. Hildebrandt F, Singh-Sawhney I, Schnieders B, et al. Mapping of a gene for familial juvenile nephronophthisis: refining the map and defining flanking markers on chromosome 2. APN Study Group. Am J Hum Genet. 1993;53(6):1256–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Hildebrandt F, Cybulla M, Strahm B, et al. Physical mapping of the gene for juvenile nephronophthisis (NPH1) by construction of a complete YAC contig of 7 Mb on chromosome 2q13. Cytogenet Cell Genet. 1996;73(3):235–9.

    Article  CAS  PubMed  Google Scholar 

  73. Hildebrandt F, Otto E, Rensing C, et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat Genet. 1997;17(2):149–53.

    Article  CAS  PubMed  Google Scholar 

  74. Hildebrandt F, Strahm B, Nothwang HG, et al. Molecular genetic identification of families with juvenile nephronophthisis type 1: rate of progression to renal failure. APN Study Group. Arbeitsgemeinschaft fur Padiatrische Nephrologie. Kidney Int. 1997;51(1):261–9.

    Article  CAS  PubMed  Google Scholar 

  75. Hildebrandt F, Rensing C, Betz R, et al. Establishing an algorithm for molecular genetic diagnostics in 127 families with juvenile nephronophthisis. Kidney Int. 2001;59(2):434–45.

    Article  CAS  PubMed  Google Scholar 

  76. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011;364(16):1533–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Hoefele J, Wolf MT, O’Toole JF, et al. Evidence of oligogenic inheritance in nephronophthisis. J Am Soc Nephrol. 2007;18(10):2789–95.

    Article  CAS  PubMed  Google Scholar 

  78. Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 2003;426(6962):83–7.

    Article  CAS  PubMed  Google Scholar 

  79. Igarashi P, Somlo S. Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol. 2002;13(9):2384–98.

    Article  CAS  PubMed  Google Scholar 

  80. Ivemark BI, Ljungqvist A, Barry A. Juvenile nephronophthisis. Part 2. A histologic and microangiographic study. Acta Paediatr. 1960;49:480–7.

    Article  CAS  PubMed  Google Scholar 

  81. Jauregui AR, Barr MM. Functional characterization of the C. elegans nephrocystins NPHP-1 and NPHP-4 and their role in cilia and male sensory behaviors. Exp Cell Res. 2005;305(2):333–42.

    Article  CAS  PubMed  Google Scholar 

  82. Jauregui AR, Nguyen KC, Hall DH, Barr MM. The Caenorhabditis elegans nephrocystins act as global modifiers of cilium structure. J Cell Biol. 2008;180(5):973–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Jeune M, Beraud C, Carron R. Dystrophie thoracique asphyxiante de caractere familial. [Asphyxiating thoracic dystrophy with familial characteristics]. Arch Fr Pediatr. 1955;12(8):886–91.

    CAS  PubMed  Google Scholar 

  84. Joubert M, Eisenring JJ, Robb JP, Andermann F. Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology. 1969;19(9):813–25.

    Article  CAS  PubMed  Google Scholar 

  85. Keeler LC, Marsh SE, Leeflang EP, et al. Linkage analysis in families with Joubert syndrome plus oculo-renal involvement identifies the CORS2 locus on chromosome 11p12-q13.3. Am J Hum Genet. 2003;73(3):656–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Khaddour R, Smith U, Baala L, et al. Spectrum of MKS1 and MKS3 mutations in Meckel syndrome: a genotype-phenotype correlation. Mutation in brief #960. Online. Hum Mutat. 2007;28(5):523–4.

    Article  PubMed  Google Scholar 

  87. Kirby A, Gnirke A, Jaffe DB, Barešová V, Pochet N, Blumenstiel B, Ye C, Aird D, Stevens C, Robinson JT, Cabili MN, Gat-Viks I, Kelliher E, Daza R, DeFelice M, Hůlková H, Sovová J, Vylet’al P, Antignac C, Guttman M, Handsaker RE, Perrin D, Steelman S, Sigurdsson S, Scheinman SJ, Sougnez C, Cibulskis K, Parkin M, Green T, Rossin E, Zody MC, Xavier RJ, Pollak MR, Alper SL, Lindblad-Toh K, Gabriel S, Hart PS, Regev A, Nusbaum C, Kmoch S, Bleyer AJ, Lander ES, Daly MJ. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat Genet. 2013;45(3):299–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Kiser RL, Wolf MT, Martin JL, et al. Medullary cystic kidney disease type 1 in a large Native-American kindred. Am J Kidney Dis. 2004;44(4):611–7.

    Article  CAS  PubMed  Google Scholar 

  89. Kleinknecht C. The inheritance of nephronophthisis, Inheritance of kidney and urinary tract diseases, vol. 9. Boston: Kluwer; 1989. p. 464.

    Google Scholar 

  90. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A. 1993;90(12):5519–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Kumada S, Hayashi M, Arima K, et al. Renal disease in Arima syndrome is nephronophthisis as in other Joubert-related Cerebello-oculo-renal syndromes. Am J Med Genet A. 2004;131(1):71–6.

    Article  PubMed  Google Scholar 

  92. Kyttala M, Tallila J, Salonen R, et al. MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat Genet. 2006;38(2):155–7.

    Article  PubMed  CAS  Google Scholar 

  93. Lans H, Marteijn JA, Schumacher B, Hoeijmakers JH, Jansen G, Vermeulen W. Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development. PLoS Genet. 2010;6(5):e1000941. doi:10.1371/journal.pgen.1000941.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Lin F, Hiesberger T, Cordes K, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A. 2003;100(9):5286–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Liu S, Lu W, Obara T, et al. A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development. 2002;129(24):5839–46.

    Article  CAS  PubMed  Google Scholar 

  96. Loken AC, Hanssen O, Halvorsen S, Jolster NJ. Hereditary renal dysplasia and blindness. Acta Paediatr. 1961;50:177–84.

    Article  CAS  PubMed  Google Scholar 

  97. Mainzer F, Saldino RM, Ozonoff MB, Minagi H. Familial nephropathy associated with retinitis pigmentosa, cerebellar ataxia and skeletal abnormalities. Am J Med. 1970;49(4):556–62.

    Article  CAS  PubMed  Google Scholar 

  98. McGrath J, Somlo S, Makova S, et al. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell. 2003;114(1):61–73.

    Article  CAS  PubMed  Google Scholar 

  99. McGregor AR, Bailey RR. Nephronophthisis-cystic renal medulla complex: diagnosis by computerized tomography. Nephron. 1989;53(1):70–2.

    Article  CAS  PubMed  Google Scholar 

  100. Mf G, Jl B, Broyer M, Habib R. Infantile chronic tubulo-interstitial nephritis with cortical microcysts: variant of nephronophthisis or new disease entity? Pediatr Nephrol. 1989;3(1):50–5.

    Article  Google Scholar 

  101. Mochizuki T, Saijoh Y, Tsuchiya K, et al. Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature. 1998;395(6698):177–81.

    Article  CAS  PubMed  Google Scholar 

  102. Mollet G, Salomon R, Gribouval O, et al. The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nat Genet. 2002;32(2):300–5.

    Article  CAS  PubMed  Google Scholar 

  103. Mollet G, Silbermann F, Delous M, et al. Characterization of the nephrocystin/nephrocystin-4 complex and subcellular localization of nephrocystin-4 to primary cilia and centrosomes. Hum Mol Genet. 2005;14(5):645–56.

    Article  CAS  PubMed  Google Scholar 

  104. Morgan D, Turnpenny L, Goodship J, et al. Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet. 1998;20(2):149–56.

    Article  CAS  PubMed  Google Scholar 

  105. Moudgil A, Bagga A, Kamil ES, et al. Nephronophthisis associated with Ellis-van Creveld syndrome. Pediatr Nephrol. 1998;12(1):20–2.

    Article  CAS  PubMed  Google Scholar 

  106. Mykytyn K, Sheffield VC. Establishing a connection between cilia and Bardet-Biedl Syndrome. Trends Mol Med. 2004;10(3):106–9.

    Article  CAS  PubMed  Google Scholar 

  107. Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129–37.

    Article  CAS  PubMed  Google Scholar 

  108. Nothwang HG, Strahm B, Denich D, et al. Molecular cloning of the interleukin-1 gene cluster: construction of an integrated YAC/PAC contig and a partial transcriptional map in the region of chromosome 2q13. Genomics. 1997;41(3):370–8.

    Article  CAS  PubMed  Google Scholar 

  109. Nurnberger J, Bacallao RL, Phillips CL. Inversin forms a complex with catenins and N-cadherin in polarized epithelial cells. Mol Biol Cell. 2002;13(9):3096–106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. O’Toole JF, Otto E, Frishberg Y, Hildebrandt F. Retinitis pigmentosa and renal failure in a patient with mutations in inversin. J Am Soc Nephrol. 2004;15:215A.

    Google Scholar 

  111. Olbrich H, Fliegauf M, Hoefele J, et al. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet. 2003;34(4):455–9.

    Article  CAS  PubMed  Google Scholar 

  112. Omran H, Fernandez C, Jung M, et al. Identification of a new gene locus for adolescent nephronophthisis, on chromosome 3q22 in a large Venezuelan pedigree. Am J Hum Genet. 2000;66(1):118–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Otto E, Betz R, Rensing C, et al. A deletion distinct from the classical homologous recombination of juvenile nephronophthisis type 1 (NPH1) allows exact molecular definition of deletion breakpoints. Hum Mutat. 2000;16(3):211–23.

    Article  CAS  PubMed  Google Scholar 

  114. Otto E, Kispert A, Schatzle S, et al. Nephrocystin: gene expression and sequence conservation between human, mouse, and Caenorhabditis elegans. J Am Soc Nephrol. 2000;11(2):270–82.

    CAS  PubMed  Google Scholar 

  115. Otto E, Hoefele J, Ruf R, et al. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am J Hum Genet. 2002;71(5):1167–71.

    Article  Google Scholar 

  116. Otto EA, Schermer B, Obara T, et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet. 2003;34(4):413–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Otto EA, Loeys B, Khanna H, et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet. 2005;37(3):282–8.

    Article  CAS  PubMed  Google Scholar 

  118. Otto EA, Trapp ML, Schultheiss UT, et al. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. J Am Soc Nephrol. 2008;19(3):587–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Parisi MA, Dobyns WB. Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab. 2003;80(1–2):36–53.

    Article  CAS  PubMed  Google Scholar 

  120. Parisi MA, Doherty D, Eckert ML, et al. AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J Med Genet. 2006;43(4):334–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Pazour GJ, Rosenbaum JL. Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol. 2002;12(12):551–5.

    Article  CAS  PubMed  Google Scholar 

  122. Pazour GJ, Dickert BL, Witman GB. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol. 1999;144(3):473–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol. 2000;151(3):709–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Potter DE, Holliday MA, Piel CF, et al. Treatment of end-stage renal disease in children: a 15-year experience. Kidney Int. 1980;18(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  125. Proesmans W, Van Damme B, Macken J. Nephronophthisis and tapetoretinal degeneration associated with liver fibrosis. Clin Nephrol. 1975;3(4):160–4.

    CAS  PubMed  Google Scholar 

  126. Rayfield EJ, McDonald FD. Red and blonde hair in renal medullary cystic disease. Arch Intern Med. 1972;130(1):72–5.

    Article  CAS  PubMed  Google Scholar 

  127. Resnick J, Sisson S, Vernier RL. Tamm-Horsfall protein. Abnormal localization in renal disease. Lab Invest. 1978;38:550.

    CAS  PubMed  Google Scholar 

  128. Rezende-Lima W, Parreira KS, Garcia-Gonzalez M, et al. Homozygosity for uromodulin disorders: FJHN and MCKD-type 2. Kidney Int. 2004;66(2):558–63.

    Article  CAS  PubMed  Google Scholar 

  129. Roepman R, Bernoud-Hubac N, Schick DE, et al. The retinitis pigmentosa gtpase regulator (RPGR) interacts with novel transport-like proteins in the outer segments of rod photoreceptors. Hum Mol Genet. 2000;9(14):2095–105.

    Article  CAS  PubMed  Google Scholar 

  130. Roume J, Genin E, Cormier-Daire V, et al. A gene for Meckel syndrome maps to chromosome 11q13. Am J Hum Genet. 1998;63(4):1095–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Saadi-Kheddouci S, Berrebi D, Romagnolo B, et al. Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the beta-catenin gene. Oncogene. 2001;20(42):5972–81.

    Article  CAS  PubMed  Google Scholar 

  132. Saar K, Al-Gazali L, Sztriha L, et al. Homozygosity mapping in families with Joubert syndrome identifies a locus on chromosome 9q34.3 and evidence for genetic heterogeneity. Am J Hum Genet. 1999;65(6):1666–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O’Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi AR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, Reiter JF, Jackson PK. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell. 2011;145(4):513–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Saraiva JM, Baraitser M. Joubert syndrome: a review. Am J Med Genet. 1992;43(4):726–31.

    Article  CAS  PubMed  Google Scholar 

  135. Sarimurat N, Elcioglu N, Tekant GT, et al. Jeune’s asphyxiating thoracic dystrophy of the newborn. Eur J Pediatr Surg. 1998;8(2):100–1.

    Article  CAS  PubMed  Google Scholar 

  136. Satran D, Pierpont ME, Dobyns WB. Cerebello-oculo-renal syndromes including Arima, Senior-Loken and COACH syndromes: more than just variants of Joubert syndrome. Am J Med Genet. 1999;86(5):459–69.

    Article  CAS  PubMed  Google Scholar 

  137. Saunier S, Calado J, Heilig R, et al. A novel gene that encodes a protein with a putative src homology 3 domain is a candidate gene for familial juvenile nephronophthisis. Hum Mol Genet. 1997;6(13):2317–23.

    Article  CAS  PubMed  Google Scholar 

  138. Saunier S, Morin G, Calado J, et al. Large deletions of the NPH1 region in Cogan syndrome (CS) associated with familial juvenile nephronophthisis (NPH). Am J Hum Genet. 1997;61:A346.

    Google Scholar 

  139. Saunier S, Calado J, Benessy F, et al. Characterization of the NPHP1 locus: mutational mechanism involved in deletions in familial juvenile nephronophthisis. Am J Hum Genet. 2000;66(3):778–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Sayer JA, Otto EA, O’Toole JF, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet. 2006;38(6):674–81.

    Article  CAS  PubMed  Google Scholar 

  141. Schermer B, Hopker K, Omran H, et al. Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia. EMBO J. 2005;24(24):4415–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Schuermann MJ, Otto E, Becker A, et al. Mapping of gene loci for nephronophthisis type 4 and Senior-Løken Syndrome, to chromosome 1p36. Am J Hum Genet. 2002;70(5):1240–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Scolari F, Ghiggeri GM, Amoroso A, et al. Genetic heterogeneity for autosomal dominant medullary cystic kidney disease (ADMCKD). J Am Soc Nephrol. 1998;9:393A.

    Google Scholar 

  144. Scolari F, Puzzer D, Amoroso A, et al. Identification of a new locus for medullary cystic disease, on chromosome 16p12. Am J Hum Genet. 1999;64(6):1560–655.

    Article  Google Scholar 

  145. Senior B, Friedmann AI, Braudo JL. Juvenile familial nephropathy with tapetoretinal degeneration: a new oculorenal dystrophy. Am J Ophthalmol. 1961;52:625–33.

    Article  CAS  PubMed  Google Scholar 

  146. Sherman FE, Studnicki FM, Fetterman GH. Renal lesions of familial juvenile nephronophthisis examined by microdissection. Am J Clin Pathol. 1971;55:391.

    CAS  PubMed  Google Scholar 

  147. Simons M, Gloy J, Ganner A, et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet. 2005;37(5):537–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Smith C, Graham J. Congenital medullary cysts of the kidneys with severe refractory anemia. Am J Dis Child. 1945;69:369–77.

    Google Scholar 

  149. Smith UM, Consugar M, Tee LJ, et al. The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat Genet. 2006;38(2):191–6.

    Article  CAS  PubMed  Google Scholar 

  150. Sohara E, Luo Y, Zhang J, et al. Nek8 regulates the expression and localization of polycystin-1 and polycystin-2. J Am Soc Nephrol. 2008;19(3):469–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Spurr NK, Barton H, Bashir R, et al. Report and abstracts of the third international workshop on human chromosome 2 mapping 1994. Aarhus, Denmark, June 24–26, 1994. Cytogenet Cell Genet. 1994;67(4):215–44.

    Article  CAS  PubMed  Google Scholar 

  152. Spurr NK, Bashir R, Bushby K, et al. Report and abstracts of the fourth international workshop on human chromosome 2 mapping 1996. Cytogenet Cell Genet. 1996;73(4):255–73.

    Article  Google Scholar 

  153. Stavrou C, Koptides M, Tombazos C, et al. Autosomal-dominant medullary cystic kidney disease type 1: clinical and molecular findings in six large Cypriot families. Kidney Int. 2002;62(4):1385–94.

    Article  PubMed  Google Scholar 

  154. Steel BT, Lirenman DS, Battie CW. Nephronophthisis. Am J Med. 1980;68:531–8.

    Article  Google Scholar 

  155. Sworn MJ, Eisinger AJ. Medullary cystic disease and juvenile nephronophthisis in separate members of the same family. Arch Dis Child. 1972;47:278.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Torres VE, Wang X, Qian Q, et al. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med. 2004;10(4):363–4.

    Article  CAS  PubMed  Google Scholar 

  157. Tsimaratos M, Sarles J, Sigaudy S, Philip N. Renal and retinal involvement in the Sensenbrenner syndrome. Am J Med Genet. 1998;77(4):337.

    Article  CAS  PubMed  Google Scholar 

  158. Utsch B, Sayer JA, Attanasio M, et al. Identification of the first AHI1 gene mutations in nephronophthisis-associated Joubert syndrome. Pediatr Nephrol. 2006;21(1):32–5.

    Article  PubMed  Google Scholar 

  159. Valente EM, Marsh SE, Castori M, et al. Distinguishing the four genetic causes of Jouberts syndrome-related disorders. Ann Neurol. 2005;57(4):513–9.

    Article  PubMed  Google Scholar 

  160. Valente EM, Silhavy JL, Brancati F, et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet. 2006;38(6):623–5.

    Article  CAS  PubMed  Google Scholar 

  161. van Collenburg JJ, Thompson MW, Huber J. Clinical, pathological and genetic aspects of a form of cystic disease of the renal medulla: familial juvenile nephronophthisis (FJN). Clin Nephrol. 1978;9(2):55–62.

    PubMed  Google Scholar 

  162. Waldherr R. Der nephronophthise-komplex. Nieren- und Hochdruckkh. 1983;12:397–406.

    Google Scholar 

  163. Waldherr R, Lennert T, Weber HP, et al. The nephronophthisis complex. A clinicopathologic study in children. Virchows Arch A Pathol Anat Histol. 1982;394(3):235–54.

    Article  CAS  PubMed  Google Scholar 

  164. Watnick T, Germino G. From cilia to cyst. Nat Genet. 2003;34(4):355–6.

    Article  CAS  PubMed  Google Scholar 

  165. Winkelbauer ME, Schafer JC, Haycraft CJ, et al. The C. Elegans homologs of nephrocystin-1 and nephrocystin-4 are cilia transition zone proteins involved in chemosensory perception. J Cell Sci. 2005;118(Pt 23):5575–87.

    Article  CAS  PubMed  Google Scholar 

  166. Wolf MT, Karle SM, Schwarz S, Anlauf M, Anlauf M, Glaeser L, Kroiss S, Burton C, Feest T, Otto E, Fuchshuber A, Hildebrandt F. Refinement of the critical region for MCKD1 by detection of transcontinental haplotype sharing. Kidney Int. 2003;64(3):788–92.

    Article  CAS  PubMed  Google Scholar 

  167. Wolf MT, Mucha BE, Attanasio M, et al. Mutations of the Uromodulin gene in MCKD type 2 patients cluster in exon 4, which encodes three EGF-like domains. Kidney Int. 2003;64(5):1580–7.

    Article  CAS  PubMed  Google Scholar 

  168. Wolf MT, Lee J, Panther F, et al. Expression and phenotype analysis of the nephrocystin-1 and nephrocystin-4 homologs in Caenorhabditis elegans. J Am Soc Nephrol. 2005;16(3):676–87.

    Article  CAS  PubMed  Google Scholar 

  169. Wolf MT, Mucha BE, Hennies HC, et al. Medullary cystic kidney disease type 1: mutational analysis in 37 genes based on haplotype sharing. Hum Genet. 2006;119(6):649–58.

    Article  CAS  PubMed  Google Scholar 

  170. Wolf MT, Saunier S, O’Toole JF, et al. Mutational analysis of the RPGRIP1L gene in patients with Joubert syndrome and nephronophthisis. Kidney Int. 2007;72(12):1520–6.

    Article  CAS  PubMed  Google Scholar 

  171. Zhou W, Otto EA, Cluckey A, Airik R, Hurd TW, Chaki M, Diaz K, Lach FP, Bennett GR, Gee HY, Ghosh AK, Natarajan S, Thongthip S, Veturi U, Allen SJ, Janssen S, Ramaswami G, Dixon J, Burkhalter F, Spoendlin M, Moch H, Mihatsch MJ, Verine J, Reade R, Soliman H, Godin M, Kiss D, Monga G, Mazzucco G, Amann K, Artunc F, Newland RC, Wiech T, Zschiedrich S, Huber TB, Friedl A, Slaats GG, Joles JA, Goldschmeding R, Washburn J, Giles RH, Levy S, Smogorzewska A, Hildebrandt F. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat Genet. 2012;44(8):910-5. doi:10.1038/ng.2347.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  172. Zollinger HU, Mihatsch MJ, Edefonti A, et al. Nephronophthisis (medullary cystic disease of the kidney). A study using electron microscopy, immunofluorescence, and a review of the morphological findings. Helv Paediatr Acta. 1980;35(6):509–30.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Hildebrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hildebrandt, F. (2016). Nephronophthisis and Medullary Cystic Kidney Disease in Children. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics