Skip to main content

Development of Glomerular Circulation and Function

  • Reference work entry
  • First Online:
Book cover Pediatric Nephrology

Abstract

From the Malpighian corpuscle description and Bowman’s sketch to defining its ultrastructure and molecular function, the ways we look at the kidney glomerulus have evolved tremendously. The first systematic exploration of the body with a microscope led to the identification of “Malpighian corpuscles” as “glands” within the kidney [1]. Two centuries later, a more sophisticated microscope enabled Sir William Bowman to identify glomerular capillary tufts in animal and human kidneys and demonstrate a relationship between the capillary tuft and the renal tubule [2]. Since then, the understanding of the human glomerulus as a specialized structure uniquely adapted for renal filtration at the proximal part of the nephron has considerably advanced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malpighi M. De viscerum structura exercitatio anatomica (la-cobi Montij, Bononiae); 1666.

    Google Scholar 

  2. Bowman W. On the structure and use of the Malpighian bodies of the kidney, with observations on the circulation through that gland. Philos Trans R Soc Lond B Biol Sci. 1842;132:57–80.

    Article  Google Scholar 

  3. O’Brien LL, McMahon AP. Induction and patterning of the metanephric nephron. Semin Cell Dev Biol. 2014. http://dx.doi.org/10.1016/j.semcdb.2014.08.014.

  4. Herzlinger D, Hurtado R. Patterning the renal vascular bed. Semin Cell Dev Biol. 2014. http://dx.doi.org/10.1016/j.semcdb.2014.08.002.

  5. Noden DW. Embryonic origins and assembly of blood vessels. Am Rev Respir Dis. 1989;140(4):1097–103.

    Article  PubMed  CAS  Google Scholar 

  6. Wilting JR, Christ B. Embryonic angiogenesis: a review. Naturwissenschaften. 1996;83:153–64.

    Article  PubMed  CAS  Google Scholar 

  7. Espinoza-Valdez A, Femat R, Ordaz-Salazar FC. A model for renal arterial branching based on graph theory. Math Biosci. 2010;2010(225):36–43.

    Article  Google Scholar 

  8. Tomake RJ. Assembly of the vasculature and its regulation. Berlin: Birkhäuser; 2001.

    Google Scholar 

  9. Sequeria López ML, Gomez RA. Desarrollo de la vasculatura renal. Medicina. 2000;60:694 (In Spanish) // Sequeira Lopez ML, Gomez RA. Development of the renal arterioles. JASN. 2011;22:2156–65.

    Google Scholar 

  10. Tufro A, Tufro-McReddie A, Norwood VF, Aylor KW, Botkin SJ, Carey RM, Gomez RA. Oxygen regulates vascular endothelial growth factor-mediated vasculogenesis and tubulogenesis. Dev Biol. 1997;183:139–49.

    Article  Google Scholar 

  11. Potter EL. Development of the human glomerulus. Arch Pathol. 1965;80:241–55.

    PubMed  CAS  Google Scholar 

  12. Grobstein C. Inductive interaction in the development of the mouse metanephros. J Exp Zool. 1955;130:319–40.

    Article  Google Scholar 

  13. Bernstein J, Cheng F, Roska J. Glomerular differentiation in metanephric culture. Lab Invest. 1981;45:183–90.

    PubMed  CAS  Google Scholar 

  14. Poole TJ, Coffin JD. Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool. 1989;251(2):224–31.

    Article  PubMed  CAS  Google Scholar 

  15. Sariola H, Ekblom P, Lehtonen E, Saxén L. Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane. Dev Biol. 1983;96:427–35.

    Article  PubMed  CAS  Google Scholar 

  16. Sariola H, Saarma M, Sainio K, Arumäe U, Palgi J, Vaahtokari A, Thesleff I, Karavanov A. Dependence of kidney morphogenesis on the expression of nerve growth factor receptor. Science. 1991;254(5031):571–3.

    Article  PubMed  CAS  Google Scholar 

  17. Ekblom P, Sariola H, Karkinen-Jaaskelainen M, Saxen L. The origin of the glomerular endothelium. Cell Differ. 1982;11:35–9.

    Article  PubMed  CAS  Google Scholar 

  18. Abrahamson DR, Robert B, Hyink DP, St John PL, Daniel TO. Origins and formation of microvasculature in the developing kidney. Kidney Int Suppl. 1998;67:S7–11.

    Article  PubMed  Google Scholar 

  19. Hyink DP, Tucker DC, St John PL, Leardkamolkarn V, Accavitti MA, Abrass CK, Abrahamson DR. Endogenous origin of glomerular endothelial and mesangial cells in grafts of embryonic kidneys. Am J Physiol. 1996;270:F886–99.

    PubMed  CAS  Google Scholar 

  20. Robert B, St John PL, Hyink DP, Abrahamson DR. Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. Am J Physiol. 1996;271:F744–53.

    PubMed  CAS  Google Scholar 

  21. Robert B, St John PL, Abrahamson DR. Direct visualization of renal vascular morphogenesis in Flk1 heterozygous mutant mice. Am J Physiol. 1998;275:F164–72.

    PubMed  CAS  Google Scholar 

  22. Shalaby F, Rossant J, Yamaguchi TP. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376:62–6.

    Article  PubMed  CAS  Google Scholar 

  23. Fong G-H, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995;376:66–70.

    Article  PubMed  CAS  Google Scholar 

  24. Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML. Rossant J: flk-1, an flt-related receptor tyrosine kinase, is an early marker for endothelial precursors. Development. 1993;118:489–98.

    PubMed  CAS  Google Scholar 

  25. Tufro A, Norwood VF, Carey RM, Gomez RA. Vascular endothelial growth factor induces nephrogenesis, and vasculogenesis. J Am Soc Nephrol. 1999;10:2125–34.

    PubMed  CAS  Google Scholar 

  26. Simon M, Grone HJ, Johren O. Expression of vascular endothelial growth factor and its receptors in human renal ontogenesis and adult kidney. Am J Physiol. 1995;268:F240–50.

    PubMed  CAS  Google Scholar 

  27. Flamme I, von Reutern M, Drexler HCA, Syed-Ali S, Risau W. Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev Biol. 1995;171:399–414.

    Article  PubMed  CAS  Google Scholar 

  28. Sims-Lucas S, Schaefer C, Bushnell D, Ho J, Logar A, et al. Endothelial progenitors exist within the kidney and lung mesenchyme. PLoS One. 2013;8(6):e65993.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Tufro-McReddie A, Norwood VF, Aylor KW, Botkin SJ, Carey RM, Gomez RA. Oxygen regulates vascular endothelial growth factor-mediated vasculogenesis and tubulogenesis. Dev Biol. 1997;183:139–49.

    Article  PubMed  CAS  Google Scholar 

  30. Tufro A. VEGF spatially directs angiogenesis during metanephric development in vitro. Dev Biol. 2000;227:558–66.

    Article  PubMed  CAS  Google Scholar 

  31. Loughna S, Landels EC, Woolf AS. Growth factor control of developing kidney endothelial cells. Exp Nephrol. 1996;4:112–8.

    PubMed  CAS  Google Scholar 

  32. Woolf AS, Loughna S. Origin of glomerular capillaries: is the verdict in? Exp Nephrol. 1998;6:17–21.

    Article  PubMed  CAS  Google Scholar 

  33. Hyink DP, Abrahamson DR. Origin of the glomerular vasculature in the developing kidney. Semin Nephrol. 1995;15:300–14.

    PubMed  CAS  Google Scholar 

  34. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176:85–97.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Risau W. Differentiation of endothelium. FASEB J. 1995;9:926–33.

    PubMed  CAS  Google Scholar 

  36. Risau W, Hallmann R, Albrecht U, Henke-Fahle S. Brain induces the expression of an early cell surface marker for blood–brain barrier-specific endothelium. EMBO J. 1986;5:3179–83.

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Schell C, Wanner N, Huber TB. Glomerular development–shaping the multi-cellular filtration unit. Se. Cell Dev Biol. 2014;36:39–49.

    Article  CAS  Google Scholar 

  38. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246:1306–9. PubMed: 2479986.

    Article  PubMed  CAS  Google Scholar 

  39. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 1989;246:1309–12. PubMed: 2479987.

    Article  PubMed  CAS  Google Scholar 

  40. Senger DR. Vascular endothelial growth factor: much more than an angiogenesis factor. Mol Biol Cell. 2010;21:377–9. PubMed: 20124007.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Ferrara N, Houck K, Jakeman L, Leung DW. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev. 1992;13:18–32.

    Article  PubMed  CAS  Google Scholar 

  42. Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005;438:937–45. PubMed: 16355211.

    Article  PubMed  CAS  Google Scholar 

  43. Tischer E, Mitchell R, Haertman T, et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991;266:11947–54.

    PubMed  CAS  Google Scholar 

  44. Guan F, Villegas G, Teichman J, Mundel P, Tufro A. Autocrine VEGF-A system in podocytes regulates podocin and its interaction with CD2AP. Am J Physiol Renal Physiol. 2006;291:F422–8. PubMed: 16597608.

    Article  PubMed  CAS  Google Scholar 

  45. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest. 2003;111:707–16. PubMed: 12618525.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Roberts WG, Palade GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 1997;57:765–72.

    PubMed  CAS  Google Scholar 

  47. Kamba T, et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol. 2006;290:H560–76.

    CAS  Google Scholar 

  48. Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W. Vascular endothelial growth factor induces endothelial fenestration in vitro. J Cell Biol. 1998;140:947–59.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Kretzler M, Schroppel B, Merkle M, et al. Detection of multiple vascular endothelial growth factor splice isoforms in single glomerular podocytes. Kidney Int Suppl. 1998;67:S159–61.

    Article  PubMed  CAS  Google Scholar 

  50. Breier G, Albrecht U, Sterrer S, Risau W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development. 1992;114(2):521–32.

    PubMed  CAS  Google Scholar 

  51. Brown LF, Berse B, Tognazzi K, Manseau EJ, Van de Water L, Senger DR, Dvorak HF, Rosen S. Vascular permeability factor mRNA and protein expression in human kidney. Kidney Int. 1992;42(6):1457–61.

    Article  PubMed  CAS  Google Scholar 

  52. Eremina V, Cui S, Gerber H, Ferrara N, Haigh J, Nagy A, et al. Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival. J Am Soc Nephrol. 2006;17:724–35. PubMed: 16436493.

    Article  PubMed  CAS  Google Scholar 

  53. Veron D, Reidy K, Villegas G, Kopp J, Thomas D, Tufro A. Induction of podocyte VEGF-A overexpression in adult mice causes glomerular disease. Kidney Int. 2010;77:989–99. PubMed: 20375978.

    Article  PubMed  CAS  Google Scholar 

  54. Veron D, Reidy K, Marlier A, Villegas G, Kashgarian M, Tufro A. Induction of podocyte VEGF164 overexpression at different stages of development causes congenital nephrosis or steroid-resistant nephrotic syndrome. Am J Pathol. 2010;177:2225–33. PubMed: 20829436.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Jin J, Sison K, Li C, et al. Soluble FLT1 binds lipid micro-domains in podocytes to control cell morphology and glomerular barrier function. Cell. 2012;151:384–99.

    Article  PubMed  CAS  Google Scholar 

  56. Tufro A, Veron D. VEGF and podocytes in diabetic nephropathy. Semin Nephrol. 2012;32:385–93.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Bertuccio C, Veron D, Aggarwal PK, et al. Vascular endothelial growth factor receptor 2 direct interaction with nephrin links VEGF-A signals to actin in kidney podocytes. J Biol Chem. 2011;286:39933–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML. Autocrine VEGF signaling is required for vascular homeostasis. Cell. 2007;130(4):691–703.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Villegas G, Lange-Sperandio GB, Tufro A. Autocrine and paracrine functions of vascular endothelial growth factor (VEGF) in renal tubular epithelial cells. Kidney Int. 2005;67:449–57. PubMed: 15673292.

    Article  PubMed  CAS  Google Scholar 

  60. Kanellis J, Fraser S, Katerelos M, Power DA. Vascular endothelial growth factor is a survival factor for renal tubular epithelial cells. Am J Physiol Renal Physiol. 2000;278:F905–15. PubMed: 10836978.

    PubMed  CAS  Google Scholar 

  61. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358:1129–36. PubMed: 18337603.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Veron D, Villegas G, Aggarwal P, Moeckel G, Kashgarian M, Tufro A. Acute podocyte VEGF-A knockdown disrupts αVβ3 integrin signaling in the glomerulus. J Am Soc Nephrol. 2011;22:9A. PubMed: 21164024.

    Google Scholar 

  63. Müller-Deile J, Worthmann K, Saleem M, Tossidou I, Haller H, Schiffer M. The balance of autocrine VEGF-A and VEGF-C determines podocyte survival. Am J Physiol Renal Physiol. 2009;297:F1656–67. PubMed: 19828679.

    Article  PubMed  CAS  Google Scholar 

  64. Ku CH, White KE, Dei Cas A, Hayward A, Webster Z, Bilous R, et al. Inducible overexpression of sFlt-1 in podocytes ameliorates glomerulopathy in diabetic mice. Diabetes. 2008;57:2824–33. PubMed: 18647955.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005;437:497–504. PubMed: 16177780.

    Article  PubMed  CAS  Google Scholar 

  66. Carmeliet P, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380:435–9.

    Article  PubMed  CAS  Google Scholar 

  67. Ferrara N, Carver-Moore K, Chen H. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380:439–42.

    Article  PubMed  CAS  Google Scholar 

  68. Breier G, Risau W. The role of vascular endothelial growth factor in blood vessel formation. Trends Cell Biol. 1996;6:454.

    Article  PubMed  CAS  Google Scholar 

  69. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389–95.

    Article  PubMed  CAS  Google Scholar 

  70. Eichmann A, Makinen T, Alitalo K. Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev. 2005;19:1013–21.

    Article  PubMed  CAS  Google Scholar 

  71. Gelfand MV, Hong S, Gu C. Guidance from above: common cues direct distinct signaling outcomes in vascular and neural patterning. Trends Cell Biol. 2009;19:99–110.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Reidy KJ, Villegas G, Teichman J, Veron D, Shen W, Jimenez J, et al. Semaphorin 3a regulates endothelial cell number and podocyte differentiation during glomerular development. Development. 2009;136:3979–89.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Lindahl P, Hellstrom M, Kalen M, Karlsson L, Pekny M, Pekna M, et al. Paracrine PDGF-B/PDGF-R beta signaling controls mesangial cell development in kidney glomeruli. Development. 1998;125:3313–22.

    PubMed  CAS  Google Scholar 

  74. Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277:242–5.

    Article  PubMed  CAS  Google Scholar 

  75. Boyle SC, Liu Z, Kopan R. Notch signaling is required for the formation of mesangial cells from a stromal mesenchyme precursor during kidney development. Development. 2014;141:346–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Lin EE, Sequeira-Lopez ML, Gomez RA. RBP-J in FOXD1+ renal stromal progenitors is crucial for the proper development and assembly of the kidney vasculature and glomerular mesangial cells. Am J Physiol Renal Physiol. 2014;306:F249–58.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Takabatake Y, Sugiyama T, Kohara H, Matsusaka T, Kurihara H, Koni PA, et al. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J Am Soc Nephrol. 2009;20:1714–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Jeansson M, Gawlik A, Anderson G, Li C, Kerjaschki D, Henkelman M, et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J Clin Invest. 2011;121:2278–89.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Dimke H, Sparks MA, Thomson BR, Frische S, Coffman TM, Quaggin SE. Tubulovascular Cross-Talk by vascular endothelial growth factor a maintains peritubular microvasculature in kidney. J Am Soc Nephrol. 2015;26(5):1027–38.

    Google Scholar 

  80. Tufro A. Tubular vascular endothelial growth factor-A, erythropoietin, and medullary vessels: a trio linked by hypoxia. J Am Soc Nephrol. 2014;pii:ASN.2014101004.

    Google Scholar 

  81. Pitera JE, Woolf AS, Gale NW, Yancopoulos GD, Yuan HT. Dysmorphogenesis of kidney cortical peritubular capillaries in angiopoietin-2-deficient mice. Am J Pathol. 2004;165:1895–906.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Madsen K, Marcussen N, Pedersen M, Kjaersgaard G, Facemire C, Coffman TM, et al. Angiotensin II promotes development of the renal microcirculation through AT1 receptors. J Am Soc Nephrol. 2010;21:448–59.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Pappenheimer JR. Über die Permeabilität der Glomerulummembranen in der Niere. Klir Wochenschr. 1955;33:362.

    Article  CAS  Google Scholar 

  84. Landis EM, Pappenheimer JR. Exchange of substances through the capillary walls. Handb Physiol. 1963;2(2):961.

    Google Scholar 

  85. Dressler GR. The cellular basis of kidney development. Annu Rev Cell Dev Biol. 2006;22:509–29.

    Article  PubMed  CAS  Google Scholar 

  86. Mundel P, Kriz W. Structure and function of podocytes: an update. Anat Embryol (Berl). 1995;192:385–97.

    Article  CAS  Google Scholar 

  87. Rodewald R, Karnovsky MJ. Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol. 1974;60:423–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Hora K, Ohno S, Ogushi H, Furukawa T, Furuta S. Three-dimensional study of glomerular slit diaphragm by the quick-freezing and deep-etching replica method. Eur J Cell Biol. 1990;53:402–6.

    PubMed  CAS  Google Scholar 

  89. Wartiovaara J, Ofverstedt LG, Khoshnoodi J, Zhang J, Makela E, Sandin S, Ruotsalainen V, Cheng RH, Jalanko H, Skoglund U, Tryggvason K. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest. 2004;114:1475–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Gagliardini E, Conti S, Benigni A, Remuzzi G, Remuzzi A. Imaging of the porous ultrastructure of the glomerular epithelial filtration slit. J Am Soc Nephrol. 2012;21:2081–9.

    Article  Google Scholar 

  91. Farquhar MG, Wissig SL, Palade GE. Glomerular permeability. I. Ferritin transfer across the normal glomerular capillary wall. J Exp Med. 1961;113:47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Farquhar MG, Palade GE. Glomerular permeability. II. Ferritin transfer across the glomerular capillary wall in nephrotic rats. J Exp Med. 1961;114:699.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Venkatachalam MA, Karnovsky MJ, Cotran RS. Glomerular permeability. Ultrastructural studies in experimental nephrosis using horseradish peroxidase as a tracer. J Exp Med. 1969;130:381–99.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Kestilä M, Lenkkeri U, Männikkö M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K. Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1:575–82.

    Article  PubMed  Google Scholar 

  95. Wanner N, Noutsou F, Baumeister R, Walz G, Huber TB, Neumann-Haefelin E. Functional and spatial analysis of C. elegans SYG-1 and SYG-2, orthologs of the Neph/nephrin cell adhesion module directing selective synaptogenesis. PLoS One. 2011;6:e23598.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Helmstädter M, Lüthy K, Gödel M, Simons M, Ashish ND, Rensing SA, Fischbach KF, Huber TB. Functional study of mammalian Neph proteins in Drosophila melanogaster. PLoS One. 2012;7:e40300.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Huber TB, Benzing T. The slit diaphragm: a signaling plat- form to regulate podocyte function. Curr Opin Nephrol Hypertens. 2005;14:211–6.

    Article  PubMed  Google Scholar 

  98. Neumann-Haefelin E, Kramer-Zucker A, Slanchev K, Hartleben B, Noutsou F, Martin K, Wanner N, Ritter A, Gödel M, Pagel P, Fu X, Müller A, Baumeister R, Walz G, Huber TB. A model organism approach: defining the role of Neph proteins as regulators of neuron and kidney morphogenesis. Hum Mol Genet. 2010;19:2347–59.

    Article  PubMed  CAS  Google Scholar 

  99. Rantanen M, Palmén T, Pätäri A, Ahola H, Lehtonen S, Aström E, Floss T, Vauti F, Wurst W, Ruiz P, Kerjaschki D, Holthöfer H. Nephrin TRAP mice lack slit diaphragms and show fibrotic glomeruli and cystic tubular lesions. J Am Soc Nephrol. 2002;13:1586–94.

    Article  PubMed  CAS  Google Scholar 

  100. Ruotsalainen V, Ljungberg P, Wartiovaara J, et al. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc Natl Acad Sci U S A. 1999;96:7962–7. PubMed: 10393930.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Sellin L, Huber TB, Gerke P, Quack I, Pavenstädt H, Walz G. NEPH1 defines a novel family of podocin interacting proteins. FASEB J. 2003;17:115–7.

    PubMed  CAS  Google Scholar 

  102. Donoviel DB, Freed DD, Vogel H, et al. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol. 2001;21:4829–36.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Doné SC, Takemoto M, He L, et al. Nephrin is involved in podocyte maturation but not survival during glomerular development. Kidney Int. 2008;73:697–704.

    Article  PubMed  CAS  Google Scholar 

  104. Simons M, Huber TB. It’s not all about nephrin. Kidney Int. 2008;73:671–3.

    Article  PubMed  CAS  Google Scholar 

  105. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, Dahan K, Gubler MC, Niaudet P, Antignac C. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet. 2000;24:349–54.

    Article  PubMed  CAS  Google Scholar 

  106. Miner JH. Focusing on the glomerular slit diaphragm: podocin enters the picture. Am J Pathol. 2002;160:3–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Asanuma K, Campbell KN, Kim K, Faul C, Mundel P. Nuclear relocation of the nephrin and CD2AP-binding protein dendrin promotes apoptosis of podocytes. Proc Natl Acad Sci U S A. 2007;104:10134–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science. 1999;286:312–5.

    Article  PubMed  CAS  Google Scholar 

  109. Li C, Ruotsalainen V, Tryggvason K, et al. CD2AP is expressed with nephrin in developing podocytes and is found widely in mature kidney and elsewhere. Am J Physiol Renal Physiol. 2000;279:F785–92. PubMed: 10997929.

    PubMed  CAS  Google Scholar 

  110. Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, Nürnberg G, Garg P, Verma R, Chaib H, Hoskins BE, Ashraf S, Becker C, Hennies HC, Goyal M, Wharram BL, Schachter AD, Mudumana S, Drummond I, Kerjaschki D, Waldherr R, Dietrich A, Ozaltin F, Bakkaloglu A, Cleper R, Basel-Vanagaite L, Pohl M, Griebel M, Tsygin AN, Soylu A, Müller D, Sorli CS, Bunney TD, Katan M, Liu J, Attanasio M, O’toole JF, Hasselbacher K, Mucha B, Otto EA, Airik R, Kispert A, Kelley GG, Smrcka AV, Gudermann T, Holzman LB, Nürnberg P, Hildebrandt F. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet. 2006;38:1397–405.

    Article  PubMed  CAS  Google Scholar 

  111. Reiser J, Polu KR, Möller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR. TRPC6 is a glomerular slit diaphragm- associated channel required for normal renal function. Nat Genet. 2005;37:739–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem. 1989;180:487–502.

    Article  PubMed  CAS  Google Scholar 

  113. Miner JH. Developmental biology of glomerular basement membrane components. Curr Opin Nephrol Hypertens. 1998;7:13–9.

    Article  PubMed  CAS  Google Scholar 

  114. St John PL, Wang R, Yin Y, Miner JH, Robert B, Abrahamson DR. Glomerular laminin isoform transitions: errors in metanephric culture are corrected by grafting. Am J Physiol Renal Physiol. 2001;280(4):F695–705.

    PubMed  CAS  Google Scholar 

  115. Miner JH, Patton BL, Lentz SI, Gilbert DJ, Snider WD, Jenkins NA, Copeland NG, Sanes JR. The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8-11, and cloning of a novel alpha3 isoform. J Cell Biol. 1997;137:685–701.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Miner JH, Sanes JR. Collagen IV α3, α4, and α5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J Cell Biol. 1994;127:879–91.

    Article  PubMed  CAS  Google Scholar 

  117. Poschl E, Schlotzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development. 2004;131:1619–28.

    Article  PubMed  CAS  Google Scholar 

  118. Bohrer MP, Baylis C, Humes HD, Glassock RJ, Robertson CR, Brenner BM. Permselectivity of the glomerular capillary wall. Facilitated filtration of circulating polycations. J Clin Invest. 1978;61:72–8. PubMed: 618914.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Smithies O. Why the kidney glomerulus does not clog: a gel permeation/diffusion hypothesis of renal function. Proc Natl Acad Sci U S A. 2003;100(7):4108–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Moeller MJ, Tenten V. Renal albumin filtration: alternative models to the standard physical barriers. Nat Rev Nephrol. 2013;9(5):266–77.

    Article  PubMed  Google Scholar 

  121. Satchell S. The role of the glomerular endothelium in albumin handling. Nat Rev Nephrol. 2013;9(12):717–25.

    Article  PubMed  CAS  Google Scholar 

  122. Haraldsson B, Nyström J, Deen WM. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev. 2008;88:451–87.

    Article  PubMed  CAS  Google Scholar 

  123. Harvey SJ, Jarad G, Cunningham J, Rops AL, van der Vlag J, Berden JH, Moeller MJ, Holzman LB, Burgess RW, Miner JH. Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am J Pathol. 2007;171:139–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  124. Goldberg S, Harvey SJ, Cunningham J, Tryggvason K, Miner JH. Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrol Dial Transplant. 2009;24:2044–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. van den Hoven MJ, Wijnhoven TJ, Li JP, Zcharia E, Dijkman HB, Wismans RG, Rops AL, Lensen JF, van den Heuvel LP, van Kuppevelt TH, Vlodavsky I, Berden JH, van der Vlag J. Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria. Kidney Int. 2008;73:278–87.

    Article  PubMed  CAS  Google Scholar 

  126. Axelsson J, Sverrisson K, Rippe A, Fissell W, Rippe B. Reduced diffusion of charge modified, conformationally intact anionic Ficoll relative to neutral Ficoll across the rat glomerular filtration barrier in vivo. Am J Physiol Renal Physiol. 2011;301:F708–12.

    Article  PubMed  CAS  Google Scholar 

  127. Hausmann R, Kuppe C, Egger H, Schweda F, Knecht V, Elger M, Menzel S, Somers D, Braun G, Fuss A, Uhlig S, Kriz W, Tanner G, Floege J, Moeller MJ. Electrical forces determine glomerular permeability. J Am Soc Nephrol. 2010;21:2053–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  128. Ryan GB, Karnovsky MJ. Distribution of endogenous albumin in the rat glomerulus: role of hemodynamic factors in glomerular barrier function. Kidney Int. 1976;9:36–45.

    Article  PubMed  CAS  Google Scholar 

  129. Bevan HS, Slater SC, Clarke H, et al. Acute laminar shear stress reversibly & increases human glomerular endothelial cell permeability via activation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol. 2011;301:F733–42.

    Article  PubMed Central  PubMed  Google Scholar 

  130. Friden V, Oveland E, Tenstad O, et al. The glomerular endothelial cell coat is essential for glomerular filtration. Kidney Int. 2011;79:1322–30.

    Article  PubMed  CAS  Google Scholar 

  131. Haraldsson B, Nyström J. The glomerular endothelium: new insights on function and structure. Curr Opin Nephrol Hypertens. 2012;21(3):258–63.

    Article  PubMed  CAS  Google Scholar 

  132. Oubaha M, Gratton JP. Phosphorylation of endothelial nitric oxide synthase by atypical PKC zeta contributes to angiopoietin-1-dependent inhibition of VEGF-induced endothelial permeability in vitro. Blood. 2009;114(15):3343–51.

    Article  PubMed  CAS  Google Scholar 

  133. Eklund L, Saharinen P. Angiopoietin signaling in the vasculature. Exp Cell Res. 2013;319(9):1271–80.

    Article  PubMed  CAS  Google Scholar 

  134. Davis B, Dei Cas A, Long DA, White KE, Hayward A, Ku CH, Woolf AS, Bilous R, Viberti G, Gnudi L. Podocyte-specific expression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia. J Am Soc Nephrol. 2007;18(8):2320–9.

    Article  PubMed  CAS  Google Scholar 

  135. Khan S, Lakhe-Reddy S, McCarty JH, et al. Mesangial cell integrin alphavbeta8 provides glomerular endothelial cell cytoprotection by sequestering TGF-beta and regulating PECAM-1. Am J Pathol. 2011;178:609–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  136. Clement LC, Avila-Casado C, Mace C, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med. 2011;17:117–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  137. Huang RL, Teo Z, Chong HC, et al. ANGPTL4 modulates vascular junction & integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood. 2011;118:3990–4002.

    Article  PubMed  CAS  Google Scholar 

  138. El-Banawy HS, Gaber EW, Maharem DA, Matrawy KA. Angiopoietin-2, & endothelial dysfunction and renal involvement in patients with systemic lupus erythematosus. J Nephrol. 2011. doi:10.5301/jn.5000030. The effect of Angiopoeitin-2 and endothelial dysfunction.

    Google Scholar 

  139. Pappenheimer JR. Passage of molecules through capillary walls. Physiol Rev. 1953;33:387–423.

    PubMed  CAS  Google Scholar 

  140. Blouch K, Deen WM, Fauvel JP, Bialek J, Derby G, Myers BD. Molecular configuration and glomerular size selectivity in healthy and nephrotic humans. Am J Physiol. 1997;273:F430–7.

    PubMed  CAS  Google Scholar 

  141. Deen WM, Bridges CR, Brenner BM, Myers BD. Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans. Am J Physiol. 1985;249:F374–89.

    PubMed  CAS  Google Scholar 

  142. Öberg CM, Rippe B. A distributed two-pore model: theoretical implications and practical application to the glomerular sieving of Ficoll. Am J Physiol Renal Physiol. 2014;306(8):F844–54.

    Article  PubMed  CAS  Google Scholar 

  143. Deen WM, Bohrer MP, Brenner BM. Macromolecule transport across glomerular capillaries: application of pore theory. Kidney Int. 1979;16(3):353–65.

    Article  PubMed  CAS  Google Scholar 

  144. Katz MA, Schaeffer Jr RC, Gratrix M, Mucha D, Carbajal J. The glomerular barrier fits a two-pore-and-fiber-matrix model: derivation and physiologic test. Microvasc Res. 1999;57(3):227–43.

    Article  PubMed  CAS  Google Scholar 

  145. Drummond MC, Kristal B, Myers BD, Deen WM. Structural basis for reduced glomerular filtration capacity in nephrotic humans. J Clin Invest. 1994;94:1187–95.

    Article  Google Scholar 

  146. Drummond MC, Deen WM. Structural determinants of glomerular hydraulic permeability. Am J Physiol Renal Fluid Electrolyte Physiol. 1994;266:F1–12.

    Google Scholar 

  147. Kedem O, Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958;27:229.

    Article  PubMed  CAS  Google Scholar 

  148. Bohman SO, Jaremko G, Bohlin AB, Berg U. Foot process fusion and glomerular filtration rate in minimal change nephrotic syndrome. Kidney Int. 1984;25(4):696–700.

    Article  PubMed  CAS  Google Scholar 

  149. Brenner BM, Troy JL, Daugharty TM. The dynamics of glomerular ultrafiltration in the rat. J Clin Invest. 1971;50:1776–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  150. Chasis H, Ranges HA, Goldring W, Smith HW. The control of renal blood flow and glomerular filtration in normal man. J Clin Invest. 1938;17:683.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  151. Smith HW, Goldring W, Chasis H. The measurement of the tubular excretory mass, effective blood flow and filtration rate in the normal human kidney. J Clin Invest. 1938;17:263.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  152. Smith HW, Chasis H, Goldring W, Ranges HA. Glomerular dynamics in the normal human kidney. J Clin Invest. 1940;19:751–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  153. Lafferty HM, Anderson S, Brenner BM. Anemia: a potent modulator of renal hemodynamics in models of progressive renal disease. Am J Kidney Dis. 1991;17(5 Suppl 1):2–7.

    PubMed  CAS  Google Scholar 

  154. Larsson L, Aperia A, Elinder G. Structural and functional development of the nephron. Acta Paediatr Scand Suppl. 1983;305:56–60.

    Article  PubMed  CAS  Google Scholar 

  155. Paton JB, Fisher DE, Peterson EN, DeLannoy CW, Behrman RE. Cardiac output and organ blood flows in the baboon fetus. Biol Neonate. 1973;22(1):50–7.

    Article  PubMed  CAS  Google Scholar 

  156. Rudolph AM, Heymann MA. Circulatory changes during growth in the fetal lamb. Circ Res. 1970;26(3):289–99.

    Article  PubMed  CAS  Google Scholar 

  157. Rudolph AM, Heymann MA, Teramo KAW, et al. Studies on the circulation of the previable human fetus. Pediatr Res. 1971;5:452.

    Article  CAS  Google Scholar 

  158. Rubin MI, Bruck E, Rapoport M. Maturation of renal function in childhood; clearance studies. J Clin Invest. 1949;28(5 Pt 2):1144–62.

    Article  PubMed Central  CAS  Google Scholar 

  159. Calcagno PL, Rubin MI. Renal extraction of para-aminohippurate in infants and children. J Clin Invest. 1963;42:1632–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  160. Gruskin AB, Edelmann Jr CM, Yuan S. Maturational changes in renal blood flow in piglets. Pediatr Res. 1970;4(1):7–13.

    Article  PubMed  CAS  Google Scholar 

  161. Barnett HL, Hare K, McNamara H, Hare R. Measurement of glomerular filtration rate in premature infants. J Clin Invest. 1948;27(6):691–9.

    Article  PubMed Central  CAS  Google Scholar 

  162. Spitzer A. Edelman CH Jr. Maturational changes in pressure gradients for glomerular filtration. Am J Physiol. 1971;221:1431–1435.

    Google Scholar 

  163. Horster M, Valtin H. Postnatal development of renal function: micropuncture and clearance studies in the dog. J Clin Invest. 1971;50(4):779–95.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  164. Friis C. Postnatal development of renal function in piglets: glomerular filtration rate, clearance of PAH and PAH extraction. Biol Neonate. 1979;35(3–4):180–7.

    Article  PubMed  CAS  Google Scholar 

  165. Barnett HL, Hare WK, et al. Influence of postnatal age on kidney function of premature infants. Proc Soc Exp Biol Med. 1948;69(1):55–7.

    Article  PubMed  CAS  Google Scholar 

  166. Arant Jr BS. Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr. 1978;92(5):705–12.

    Article  PubMed  CAS  Google Scholar 

  167. Abitbol CL, Seeherunvong W, Galarza MG, Katsoufis C, Francoeur D, Defreitas M, Edwards-Richards A, Master Sankar Raj V, Chandar J, Duara S, Yasin S, Zilleruelo G. Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr. 2014;164(5):1026–31.

    Article  PubMed  Google Scholar 

  168. Carl Ludwig original reference: Ludwig CFW. Beitraege zur Lehre vom Mechanismus der Harnsekretion. Marburg: N.G. Elwert; 1843.

    Google Scholar 

  169. Heidenhain RP. Absonderungsvorgaenge. Sechster Abschnitt. Die Harnabsonderung (Viertes Capitel. Die Absonderung der festen Harnbestandteile). In: Leipzig HL, editor. Handbuch d Physiol Fuenfter Teil. Germany: Vogel; 1883. p. 341–43.

    Google Scholar 

  170. Wearn JT, Richards AN. From: observations on the composition of glomerular urine, with particular reference to the problem of reabsorption in the renal tubules. Am J Physiol. 1924;71:209–27.

    CAS  Google Scholar 

  171. Starling EH. The glomerular functions of the kidney. J Physiol Lond. 1899;24:317–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  172. Wies CH, Peters JP. The osmotic pressure of proteins in whole serum. J Clin Invest. 1937;16:93.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  173. Levinsky NG, Berliner RW. Changes in composition of the ureter and bladder at low urine flow. Am J Physiol. 1959;196:549–53.

    PubMed  CAS  Google Scholar 

  174. Levinsky NG, Lieberthal W. Clearance techniques. In: Windhager E. editor. Handbook of physiology. Renal physiology. New York: Oxford University Press; 1992, sect. 8, pp. 227–47.

    Google Scholar 

  175. Shannon JA, Smith HW. The excretion of inulin, xylose and urea by normal and phlorinized man. J Clin Invest. 1935;112:405–13.

    CAS  Google Scholar 

  176. Heiskanen T, Weber T, Grasbeck R. Determination of I131 hippuric acid renal clearances using single-injection techniques. Scand J Clin Lab Invest. 1968;21:211–5.

    Article  PubMed  CAS  Google Scholar 

  177. Smith HW. The kidney- structure and function in health and disease. New York: Oxford University Press; 1951.

    Google Scholar 

  178. Earle Jr DP, Berliner RW. A simplified clinical procedure for measurement of glomerular filtration rate and renal plasma flow. Proc Soc Exp Biol Med. 1946;62(2):262–4.

    Article  PubMed  Google Scholar 

  179. Orlando R, Floreani M, Padrini R, Palatini P. Determination of inulin clearance by bolus intravenous injection in healthy subjects and ascitic patients: equivalence of systemic and renal clearances as glomerular filtration markers. Br J Clin Pharmacol. 1998;46(6):605–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  180. Brismar J, Jacobsson BF, Jorulf H. Miscellaneous adverse effects of low-versus high-osmolality contrast media: a study revised. Radiology. 1991;179(1):19–22.

    Article  PubMed  CAS  Google Scholar 

  181. Berglund F. Renal clearance of inulin, polyfructosan-S and a polyethy-lene glycol (PE6 1000) in the rat. Acta Physiol Scand. 1965;64:238–44.

    Article  PubMed  CAS  Google Scholar 

  182. Bing J, Effersoe P. Comparative tests of the thiosulphate and creatinine clearances in rabbits and cats. Acta Physiol Scand. 1948;15:231–6.

    Article  CAS  Google Scholar 

  183. Shemesh O, Golbetz H, Kriss JP, Myers BD. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985;28:830–8.

    Article  PubMed  CAS  Google Scholar 

  184. Schwartz GJ, Munoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–37.

    Article  PubMed Central  PubMed  Google Scholar 

  185. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40(2):221–6.

    Article  PubMed  CAS  Google Scholar 

  186. Roos JF, Doust J, Tett SE, Kirkpatrick CM. Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children–a meta-analysis. Clin Biochem. 2007;40(5–6):383–91.

    Article  PubMed  CAS  Google Scholar 

  187. Filler G, Yasin A, Medeiros M. Methods of assessing renal function. Pediatr Nephrol. 2014;29(2):183–92.

    Article  PubMed  Google Scholar 

  188. Filler G, Kusserow C, Lopes L, Kobrzyński M. Beta-trace protein as a marker of GFR–history, indications, and future research. Clin Biochem. 2014;47(13–14):1188–94.

    Article  PubMed  CAS  Google Scholar 

  189. Lorenz JN, Gruenstein E. A simple, nonradioactive method for evaluating single-nephron filtration rate using FITC-inulin. Am J Physiol. 1999;276(1 Pt 2):F172–7.

    PubMed  CAS  Google Scholar 

  190. Yu W, Sandoval RM, Molitoris BA. Quantitative intravital microscopy using a generalized polarity concept for kidney studies. Am J Physiol Cell Physiol. 2005;289:C1197–208.

    Article  PubMed  CAS  Google Scholar 

  191. Wang E, Meier DJ, Sandoval RM, Von Hendy-Willson VE, Presser BM, Bunch RM, Alloosh M, Sturek MS, Schwartz GJ, Molitoris BA. A portable fiberoptic ratiometric fluorescence analyzer provides rapid point-of-care determination of glomerular filtration rate in large animals. Kidney Int. 2012;81:112–7.

    Article  PubMed  CAS  Google Scholar 

  192. Yu W, Sandoval RM, Molitoris BA. Rapid determination of renal filtration fraction using an optical ratiometric imaging approach. Am J Physiol Renal Physiol. 2007;292:F1837–80.

    Article  CAS  Google Scholar 

  193. Quaggin SE. Transcriptional regulation of podocyte specification and differentiation. Microsc Res Tech. 2002;57(4):208–11.

    Article  PubMed  CAS  Google Scholar 

  194. Abrahamson DR. Role of the podocyte (and glomerular endothelium) in building the GBM. Semin Nephrol. 2012;32(4):342–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  195. Patrakka J, Tryggvason K. Molecular make-up of the glomerular filtration barrier. Biochem Biophys Res Commun. 2010;396(1):164–9.

    Article  PubMed  CAS  Google Scholar 

  196. Aperia A, Herin P. Development of glomerular perfusion rate and nephron filtration rate in rats 17 to 20 days old. Am J Physiol. 1975;228:1319.

    PubMed  CAS  Google Scholar 

  197. Aperia A, Broberger O, Thodenius K, et al. Development of renal control of salt and fluid homeostasis during the first year of life. Acta Paediatr Scand. 1975;64:393.

    Article  PubMed  CAS  Google Scholar 

  198. Chevalier RL. Developmental renal physiology of the low birth weight preterm newborn. J Urol. 1996;156(2 Pt 2):714–9.

    Article  PubMed  CAS  Google Scholar 

  199. Stonestreet BS, Oh W. Plasma creatinine levels in low-birth-weight infants during the first three months of life. Pediatrics. 1978;61:788.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alda Tufro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Tufro, A., Gulati, A. (2016). Development of Glomerular Circulation and Function. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics