Skip to main content

Nutrition Management in Childhood Kidney Disease: An Integrative and Lifecourse Approach

  • Reference work entry
  • First Online:
Book cover Pediatric Nephrology

Abstract

Infants, children, and adolescents with chronic kidney disease (CKD), end-stage renal disease (ESRD), and kidney disorders such as nephrotic syndrome face unique nutritional challenges. The goals of this chapter are to outline the nutritional problems associated with various forms of kidney disease and describe interventions to correct them. The approach to nutritional management varies greatly based on the age of the child and type of kidney disorder. The primary goals of nutrition in infants and young children with CKD are to promote adequate weight gain, linear growth, and hydration as well as maintain electrolyte homeostasis. For older children and teenagers with CKD and ESRD, the traditional nutritional goals have focused on the management of potassium and phosphorus, fluid balance, and growth. However, as our understanding of nutrition evolved, it is now recognized that diet (quantity and quality of food) has far-reaching effects on overall health. Nutrition is extremely important in modulating inflammation, immune function, and the gut microbiome, all of which play a major role in preventing chronic diseases including cardiovascular disease (CVD) and cancer. A large body of research over the past decade has led to a paradigm shift in nutrition and kidney disease. The recommendations for protein intake in the ESRD population as well as the most effective way to manage dietary phosphorus have changed dramatically. In addition, in some cases of idiopathic nephrotic syndrome, diet therapy has been effective as a treatment of the disease rather than simply managing symptoms. The following sections will identify nutritional problems in various kidney disorders and describe the diet therapy to best help manage them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ingulli EG, Mak RH. Growth in children with chronic kidney disease: role of nutrition, growth hormone, dialysis, and steroids. Curr Opin Pediatr. 2014;26(2):187–92.

    Article  CAS  PubMed  Google Scholar 

  2. Graf L, et al. Nutrition assessment and hormonal influences on body composition in children with chronic kidney disease. Adv Chronic Kidney Dis. 2007;14(2):215–23.

    Article  PubMed  Google Scholar 

  3. Foster BJ, McCauley L, Mak RH. Nutrition in infants and very young children with chronic kidney disease. Pediatr Nephrol. 2012;27(9):1427–39.

    Article  PubMed  Google Scholar 

  4. Group KW. KDOQI clinical practice guideline for nutrition in children with CKD: 2008 update. Executive summary. Am J Kidney Dis. 2009;53(3 Suppl 2):S11–104.

    Google Scholar 

  5. Bunchman TE. Nutritional delivery in infants with CKD: techniques to avoid hyperkalemia. J Ren Nutr. 2013;23(5):387–8.

    Article  PubMed  Google Scholar 

  6. Thompson K, et al. Pretreatment of formula or expressed breast milk with sodium polystyrene sulfonate (Kayexalate((R))) as a treatment for hyperkalemia in infants with acute or chronic renal insufficiency. J Ren Nutr. 2013;23(5):333–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kovacs CS. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones. Physiol Rev. 2014;94(4):1143–218.

    Article  CAS  PubMed  Google Scholar 

  8. Kovacs CS. Bone metabolism in the fetus and neonate. Pediatr Nephrol. 2014;29(5):793–803.

    Article  PubMed  Google Scholar 

  9. Abrams SA. Calcium and vitamin d requirements of enterally fed preterm infants. Pediatrics. 2013;131(5):e1676–83.

    Article  PubMed  Google Scholar 

  10. Hicks PD, et al. Total calcium absorption is similar from infant formulas with and without prebiotics and exceeds that in human milk-fed infants. BMC Pediatr. 2012;12:118.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Alon U, Chan JCM. Phosphate in pediatric health and disease. Boca Raton: CRC Press; 1993. p. 327.

    Google Scholar 

  12. Bailey DA, et al. Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res. 2000;15(11):2245–50.

    Article  CAS  PubMed  Google Scholar 

  13. Karlen J, Aperia A, Zetterstrom R. Renal excretion of calcium and phosphate in preterm and term infants. J Pediatr. 1985;106(5):814–9.

    Article  CAS  PubMed  Google Scholar 

  14. Aladangady N, et al. Urinary excretion of calcium and phosphate in preterm infants. Pediatr Nephrol. 2004;19(11):1225–31.

    Article  PubMed  Google Scholar 

  15. In: Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press; 1997.

    Google Scholar 

  16. Gattineni J, Baum M. Developmental changes in renal tubular transport-an overview. Pediatr Nephrol. 2013.

    Google Scholar 

  17. Takaiwa M, et al. Fibroblast growth factor 23 concentrations in healthy term infants during the early postpartum period. Bone. 2010;47(2):256–62.

    Article  CAS  Google Scholar 

  18. Raaijmakers R, et al. Pre-treatment of dairy and breast milk with sevelamer hydrochloride and sevelamer carbonate to reduce phosphate. Perit Dial Int. 2013;33(5):565–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Parekh RS, et al. Improved growth in young children with severe chronic renal insufficiency who use specified nutritional therapy. J Am Soc Nephrol. 2001;12(11):2418–26.

    CAS  PubMed  Google Scholar 

  20. Ivanova E, et al. Cystinosis: clinical presentation, pathogenesis and treatment. Pediatr Endocrinol Rev. 2014;12 Suppl 1:176–84.

    PubMed  Google Scholar 

  21. Nesterova G, et al. Cystinosis: renal glomerular and renal tubular function in relation to compliance with cystine-depleting therapy. Pediatr Nephrol. 2014.

    Google Scholar 

  22. Meyer KB, Levey AS. Controlling the epidemic of cardiovascular disease in chronic renal disease: report from the National Kidney Foundation Task Force on Cardiovascular Disease. J Am Soc Nephrol. 1998;9(12 Suppl):S31–42.

    CAS  PubMed  Google Scholar 

  23. Foster BJ, et al. Change in mortality risk over time in young kidney transplant recipients. Am J Transplant. 2011;11(11):2432–42.

    Article  CAS  PubMed  Google Scholar 

  24. Mitsnefes MM. Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol. 2012;23(4):578–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Flynn JT, et al. Blood pressure in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children study. Hypertension. 2008;52(4):631–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Saland JM, et al. Dyslipidemia in children with chronic kidney disease. Kidney Int. 2010;78(11):1154–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Oh J, et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 2002;106(1):100–5.

    Article  PubMed  Google Scholar 

  28. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32(5 Suppl 3):S112–9.

    Article  CAS  PubMed  Google Scholar 

  29. Shroff R, et al. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J Am Soc Nephrol. 2014;25(11):2658–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Evenepoel P, Meijers BK. Dietary fiber and protein: nutritional therapy in chronic kidney disease and beyond. Kidney Int. 2012;81(3):227–9.

    Article  CAS  PubMed  Google Scholar 

  31. Uribarri J, Oh MS. The key to halting progression of CKD might be in the produce market, not in the pharmacy. Kidney Int. 2012;81(1):7–9.

    Article  PubMed  Google Scholar 

  32. Cordain L, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81(2):341–54.

    CAS  PubMed  Google Scholar 

  33. Tuso PJ, et al. Nutritional update for physicians: plant-based diets. Perm J. 2013;17(2):61–6.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Krishnamurthy VM, et al. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 2012;81(3):300–6.

    Article  CAS  PubMed  Google Scholar 

  35. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25(4):657–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Brown K, et al. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012;4(8):1095–119.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. De Filippo C, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Vaziri ND, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83(2):308–15.

    Article  PubMed  Google Scholar 

  39. Niwa T. Indoxyl sulfate is a nephro-vascular toxin. J Ren Nutr. 2010;20(5 Suppl):S2–6.

    Article  CAS  PubMed  Google Scholar 

  40. Evenepoel P, et al. Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl. 2009;114:S12–9.

    Article  CAS  PubMed  Google Scholar 

  41. Vanholder R, et al. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol. 2014;25(9):1897–907.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Moe SM, et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(2):257–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Noori N, et al. Organic and inorganic dietary phosphorus and its management in chronic kidney disease. Iran J Kidney Dis. 2010;4(2):89–100.

    PubMed  Google Scholar 

  44. Fukagawa M, Komaba H, Miyamoto K. Source matters: from phosphorus load to bioavailability. Clin J Am Soc Nephrol. 2011;6(2):239–40.

    Article  PubMed  Google Scholar 

  45. Kalantar-Zadeh K, et al. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(3):519–30.

    Article  CAS  PubMed  Google Scholar 

  46. Gutierrez OM, et al. Dietary patterns and risk of death and progression to ESRD in individuals with CKD: a cohort study. Am J Kidney Dis. 2014;64(2):204–13.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Dekker MJ, et al. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2010;299(5):E685–94.

    Article  CAS  PubMed  Google Scholar 

  48. Carvalho CR, et al. Fructose alters adiponectin, haptoglobin and angiotensinogen gene expression in 3T3-L1 adipocytes. Nutr Res. 2010;30(9):644–9.

    Article  CAS  PubMed  Google Scholar 

  49. Johnson RJ, Sanchez-Lozada LG, Nakagawa T. The effect of fructose on renal biology and disease. J Am Soc Nephrol. 2010;21(12):2036–9.

    Article  CAS  PubMed  Google Scholar 

  50. Khitan Z, Kim DH. Fructose: a key factor in the development of metabolic syndrome and hypertension. J Nutr Metab. 2013;2013:682673.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Madero M, et al. Dietary fructose and hypertension. Curr Hypertens Rep. 2011;13(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  52. DiNicolantonio JJ, O’Keefe JH, Lucan SC. An unsavory truth: sugar, more than salt, predisposes to hypertension and chronic disease. Am J Cardiol. 2014;114(7):1126–8.

    Article  CAS  PubMed  Google Scholar 

  53. Shroff R. Phosphate is a vascular toxin. Pediatr Nephrol. 2013;28(4):583–93.

    Article  PubMed  Google Scholar 

  54. Shuto E, et al. Dietary phosphorus acutely impairs endothelial function. J Am Soc Nephrol. 2009;20(7):1504–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Tonelli M, et al. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation. 2005;112(17):2627–33.

    Article  CAS  PubMed  Google Scholar 

  56. Chang AR, et al. High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III. Am J Clin Nutr. 2014;99(2):320–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Sullivan CM, Leon JB, Sehgal AR. Phosphorus-containing food additives and the accuracy of nutrient databases: implications for renal patients. J Ren Nutr. 2007;17(5):350–4.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Uribarri J. Phosphorus additives in food and their effect in dialysis patients. Clin J Am Soc Nephrol. 2009;4(8):1290–2.

    Article  PubMed  Google Scholar 

  59. Sherman RA, Mehta O. Phosphorus and potassium content of enhanced meat and poultry products: implications for patients who receive dialysis. Clin J Am Soc Nephrol. 2009;4(8):1370–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Azocar MA, et al. Body composition in children on peritoneal dialysis. Adv Perit Dial. 2004;20:231–6.

    PubMed  Google Scholar 

  61. Quan A, Baum M. Protein losses in children on continuous cycler peritoneal dialysis. Pediatr Nephrol. 1996;10(6):728–31.

    Article  CAS  PubMed  Google Scholar 

  62. Uribarri J. The obsession with high dietary protein intake in ESRD patients on dialysis: is it justified? Nephron. 2000;86(2):105–8.

    Article  CAS  PubMed  Google Scholar 

  63. Wolfson M, Jones MR, Kopple JD. Amino acid losses during hemodialysis with infusion of amino acids and glucose. Kidney Int. 1982;21(3):500–6.

    Article  CAS  PubMed  Google Scholar 

  64. Chazot C, et al. Dialytic nutrition: provision of amino acids in dialysate during hemodialysis. Kidney Int. 1997;52(6):1663–70.

    Article  CAS  PubMed  Google Scholar 

  65. Ikizler TA, et al. Amino acid and albumin losses during hemodialysis. Kidney Int. 1994;46(3):830–7.

    Article  CAS  PubMed  Google Scholar 

  66. Canepa A, et al. Long-term effect of amino-acid dialysis solution in children on continuous ambulatory peritoneal dialysis. Pediatr Nephrol. 1991;5(2):215–9.

    Article  CAS  PubMed  Google Scholar 

  67. Canepa A, et al. Continuous ambulatory peritoneal dialysis (CAPD) of children with amino acid solutions: technical and metabolic aspects. Perit Dial Int. 1990;10(3):215–20.

    CAS  PubMed  Google Scholar 

  68. Hanning RM, Balfe JW, Zlotkin SH. Effectiveness and nutritional consequences of amino acid-based vs glucose-based dialysis solutions in infants and children receiving CAPD. Am J Clin Nutr. 1987;46(1):22–30.

    CAS  PubMed  Google Scholar 

  69. Qamar IU, et al. Effects of 3-month amino acid dialysis compared to dextrose dialysis in children on continuous ambulatory peritoneal dialysis. Perit Dial Int. 1994;14(1):34–41.

    CAS  PubMed  Google Scholar 

  70. Qamar IU, et al. Effects of amino acid dialysis compared to dextrose dialysis in children on continuous cycling peritoneal dialysis. Perit Dial Int. 1999;19(3):237–47.

    CAS  PubMed  Google Scholar 

  71. Goraya N, et al. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol. 2013;8(3):371–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Goraya N, et al. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 2012;81(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  73. Nevin KG, Rajamohan T. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation. Clin Biochem. 2004;37(9):830–5.

    Article  CAS  PubMed  Google Scholar 

  74. Noori N, et al. Dietary omega-3 fatty acid, ratio of omega-6 to omega-3 intake, inflammation, and survival in long-term hemodialysis patients. Am J Kidney Dis. 2011;58(2):248–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Uy N, et al. Effects of gluten-free, dairy-free diet on childhood nephrotic syndrome and gut microbiota. Pediatr Res. 2014;77:252.

    PubMed  Google Scholar 

  76. Sandberg DH, et al. Severe steroid-responsive nephrosis associated with hypersensitivity. Lancet. 1977;1(8008):388–91.

    Article  CAS  PubMed  Google Scholar 

  77. Laurent J, Lagrue G. Dietary manipulation for idiopathic nephrotic syndrome. A new approach to therapy. Allergy. 1989;44(8):599–603.

    Article  CAS  PubMed  Google Scholar 

  78. Sieniawska M, et al. The role of cow’s milk protein intolerance in steroid-resistant nephrotic syndrome. Acta Paediatr. 1992;81(12):1007–12.

    Article  CAS  PubMed  Google Scholar 

  79. de Sousa JS, et al. Cow’s milk protein sensitivity: a possible cause of nephrotic syndrome in early infancy. J Pediatr Gastroenterol Nutr. 1995;21(2):235–7.

    Article  PubMed  Google Scholar 

  80. Rasoulpour M, Dalidowitz C. 170: resolution of steroid-dependency by a dairy/hypoallergenic diet in children with nephrotic syndrome. Am J Kidney Dis. 2007;49(4):B67.

    Article  Google Scholar 

  81. Skripak JM, et al. The natural history of IgE-mediated cow’s milk allergy. J Allergy Clin Immunol. 2007;120(5):1172–7.

    Article  CAS  PubMed  Google Scholar 

  82. Wood RA. The natural history of food allergy. Pediatrics. 2003;111(6 Pt 3):1631–7.

    PubMed  Google Scholar 

  83. Mansueto P, et al. Non-celiac gluten sensitivity: literature review. J Am Coll Nutr. 2014;33(1):39–54.

    Article  PubMed  Google Scholar 

  84. Kaskel F, et al. Improving CKD therapies and care: a national dialogue. Clin J Am Soc Nephrol. 2014;9(4):815–7.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren Graf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg (outside the USA)

About this entry

Cite this entry

Graf, L., Reidy, K., Kaskel, F.J. (2016). Nutrition Management in Childhood Kidney Disease: An Integrative and Lifecourse Approach. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics