Zusammenfassung
Computational Social Science (CSS) ist ein interdisziplinäres Wissenschaftsfeld, das menschliches Verhalten und gesellschaftliche Systeme mit Hilfe von computergestützten Methoden und Forschungspraktiken untersucht. Dies kann sowohl die Entwicklung und den Test theoretischer Annahmen bedeuten, oder auch die systematische Beschreibung menschlichen, organisatorischen und institutionellen Verhaltens oder Systemen. Gleichzeitig ist die enge interdisziplinäre Zusammenarbeit von Sozialwissenschaft, Informatik und Naturwissenschaft für die CSS charakteristisch. Die CSS bietet sowohl Einblick in neue durch die Digitalisierung ausgelöste Phänomene als auch durch den Einsatz neuer Datensätze und Analysemethoden neue Perspektiven auf klassische Forschungsinteressen der Sozialwissenschaft. In diesem Beitrag bieten wir einen kurzen Überblick über die Eigenschaften der CSS, neue und alte Forschungsfragen zu deren Untersuchung sie erfolgreich eingesetzt wird, die grundlegenden Bausteine einer CSS-Projekt Pipeline und schließen mit der Diskussion einiger wichtiger Herausforderungen in der Einbindung der CSS in die Sozialwissenschaft insbesondere im Hinblick auf Grenzen der CSS.
Schlüsselwörter
- Computational Social Science
- Digitale Spurendaten
- Interdisziplinarität
- Inhaltsanalyse
- Netzwerkanalyse
- Experimente
This is a preview of subscription content, access via your institution.
Literatur
An, J., Kwak, H., Posegga, O., & Jungherr, A. (2019). Political discussions in homogeneous and cross-cutting communication spaces. In J. Pfeffer, C. Budak, Y.-R. Lin & F. Morstatter (Hrsg.), ICWSM 2019: Proceedings of the thirteenth international AAAI conference on web and social media (S. 68–79). Association for the Advancement of Artificial Intelligence (AAAI).
Bail, C. A., Argyle, L. P., Brown, T. W., Bumpus, J. P., Chen, H., Hunzaker, M. B. F., et al. (2018). Exposure to opposing views on social media can increase political polarization. PNAS: Proceedings of the National Academy of Sciences, 115(37), 9216–9221. https://doi.org/10.1073/pnas.1804840115
Barberá, P. (2015). Birds of the same feather tweet together: Bayesian ideal point estimation using Twitter data. Political Analysis, 23(1), 76–91. https://doi.org/10.1093/pan/mpu011
Barberá, P., Boydstun, A. E., Linn, S., McMahon, R., & Nagler, J. (2021). Automated text classification of news articles: A practical guide. Political Analysis, 29(1), 19–42. https://doi.org/10.1017/pan.2020.8
Baumann, F., Lorenz-Spreen, P., Sokolov, I. M., & Starnini, M. (2020). Modeling echo chambers and polarization dynamics in social networks. Physical Review Letters, 124(4), 048301. https://doi.org/10.1103/PhysRevLett.124.048301
Beauchamp, N. (2017). Predicting and Interpolating State-level Polling Using Twitter Textual Data. American Journal of Political Science, 61(2), 490–503. https://doi.org/10.1111/ajps.12274
Blaydes, L., Grimmer, J., & McQueen, A. (2018). Mirrors for Princes and Sultans: Advice on the art of governance in the medieval christian and Islamic worlds. The Journal of Politics, 80(4), 1150–1167. https://doi.org/10.1086/699246
Brandt, M., Tucker, C. J., Kariryaa, A., Rasmussen, K., Abel, C., Small, J., et al. (2020). An unexpectedly large count of trees in the West African Sahara and Sahel. Nature, 587, 78–82. https://doi.org/10.1038/s41586-020-2824-5
Buyalskaya, A., Gallo, M., & Camerer, C. F. (2021). The golden age of social science. PNAS: Proceedings of the National Academy of Sciences, 118(5), e2002923118. https://doi.org/10.1073/pnas.2002923118
Christensen, G., Freese, J., & Miguel, E. (2019). Transparent and reproducible social science research: How to do open science. University of California Press.
Cirone, A., & Spirling, A. (2021). Turning history into data: Data collection, measurement, and inference in HPE. Journal of Historical Political Economy, 1(1), 127–154. https://doi.org/10.1561/115.00000005
DellaPosta, D., Shi, Y., & Macy, M. (2015). Why do liberals drink lattes? American Journal of Sociology, 120(5), 1473–1511. https://doi.org/10.1086/681254
Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press. https://doi.org/10.1017/CBO9780511761942
Edelmann, A., Wolff, T., Montagne, D., & Bail, C. A. (2020). Computational social science and sociology. Annual Review of Sociology, 46, 61–81. https://doi.org/10.1146/annurev-soc-121919-054621
Epstein, J. M. (2006). Generative social science: Studies in agent-based computational modeling. Princeton University Press.
Flyvbjerk, B. (2001). Making social science matter: Why social inquiry fails and how it can succeed again. Cambridge University Press.
Freelon, D. (2018). Computational research in the Post-API age. Political Communication, 35(4), 665–668. https://doi.org/10.1080/10584609.2018.1477506
Gaisbauer, F., Pournaki, A., Banisch, S., & Olbrich, E. (2021). Ideological differences in engagement in public debate on Twitter. PLoS One, 16(3), e0249241. https://doi.org/10.1371/journal.pone.0249241
Gilardi, F., Baumgartner, L., Dermont, C., Donnay, K., Gessler, T., Kubli, M., et al. (2020). Building research infrastructures to study digital technology and politics: Lessons from Switzerland (Working Paper). https://www.fabriziogilardi.org/resources/papers/Research_Infrastructures_Digital_Technology_and_Politics.pdf. Zugegriffen am 13.12.2022.
Gilardi, F., Gessler, T., Kubli, M., & Müller, S. (2021). Social media and political agenda setting. Political Communication. https://doi.org/10.1080/10584609.2021.1910390
Göbel, S., & Munzert, S. (2018). Political advertising on the Wikipedia marketplace of information. Social Science Computer Review, 36(2), 157–175. https://doi.org/10.1177/0894439317703579
Golder, S. A., & Macy, M. W. (2014). Digital footprints: Opportunities and challenges for online social research. Annual Review of Sociology, 40, 129–152. https://doi.org/10.1146/annurev-soc-071913-043145
González-Bailón, S. (2017). Decoding the social world: Data science and the unintended consequences of communication. The MIT Press.
González-Bailón, S., Borge-Holthoefer, J., Rivero, A., & Moreno, Y. (2011). The dynamics of protest recruitment through an online network. Nature Scientific Reports, 1(197). https://doi.org/10.1038/srep00197
Granovetter, M. (2017). Society and economy: Framework and principles. The Belknap Press of Harvard University.
Grimmer, J. (2013). Representational style in congress: What legislators say and why it matters. Cambridge University Press. https://doi.org/10.1017/CBO9781139207782
Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21(3), 267–297. https://doi.org/10.1093/pan/mps028
Grimmer, J., Roberts, M. E., & Stewart, B. M. (2021). Machine learning for social science: An agnostic approach. Annual Review of Political Science, 24, 395–419. https://doi.org/10.1146/annurev-polisci-053119-015921
Herzog, A., & Benoit, K. (2015). The most unkindest cuts: Speaker selection and expressed government dissent during economic crisis. The Journal of Politics, 77(4), 1157–1175. https://doi.org/10.1086/682670
Howison, J., Wiggins, A., & Crowston, K. (2011). Validity issues in the use of social network analysis with digital trace data. Journal of the Association for Information Systems, 12(12), 767–797.
Huang, L., Perry, P. O., & Spirling, A. (2020). A general model of author „Style“ with application to the UK house of commons, 1935–2018. Political Analysis, 28(3), 412–434. https://doi.org/10.1017/pan.2019.49
Jungherr, A. (2014). The logic of political coverage on Twitter: Temporal dynamics and content. Journal of Communication, 64(2), 239–259. https://doi.org/10.1111/jcom.12087
Jungherr, A. (2015). Analyzing political communication with digital trace data: The role of Twitter messages in social science research. Springer. https://doi.org/10.1007/978-3-319-20319-5
Jungherr, A. (2019). Normalizing digital trace data. In N. J. Stroud & S. C. McGregor (Hrsg.), Digital discussions: How Big Data informs political communication (S. 9–35). Routledge. https://doi.org/10.4324/9781351209434-2
Jungherr, A., & Jürgens, P. (2010). The political click: Political participation through e-petitions in Germany. Policy & Internet, 2(4), 131–165. https://doi.org/10.2202/1944-2866.1084
Jungherr, A., & Jürgens, P. (2013). Forecasting the pulse: How deviations from regular patterns in online data can identify offline phenomena. Internet Research, 23(5), 589–607. https://doi.org/10.1108/IntR-06-2012-0115
Jungherr, A., & Jürgens, P. (2014). Through a glass, darkly: Tactical support and symbolic association in Twitter messages commenting on Stuttgart 21. Social Science Computer Review, 32(1), 74–89. https://doi.org/10.1177/0894439313500022
Jungherr, A., & Schroeder, R. (2021). Digital transformations of the public arena. Cambridge University Press.
Jungherr, A., Posegga, O., & An, J. (2019). Discursive power in contemporary media systems: A comparative framework. The International Journal of Press/Politics, 24(4), 404–425. https://doi.org/10.1177/1940161219841543
Jungherr, A., Posegga, O., & An, J. (2021). Populist supporters on Reddit: A comparison of content and behavioral patterns within publics of supporters of Donald Trump and Hillary Clinton. Social Science Computer Review. https://doi.org/10.1177/0894439321996130
Jungherr, A., Rivero, G., & Gayo-Avello, D. (2020). Retooling politics: How digital media are shaping democracy. Cambridge University Press. https://doi.org/10.1017/9781108297820
Jungherr, A., Schoen, H., & Jürgens, P. (2016). The mediation of politics through Twitter: An analysis of messages posted during the campaign for the German Federal Election 2013. Journal of Computer-Mediated Communication, 21(1), 50–68. https://doi.org/10.1111/jcc4.12143
Jungherr, A., Schoen, H., Posegga, O., & Jürgens, P. (2017). Digital trace data in the study of public opinion: An indicator of attention toward politics rather than political support. Social Science Computer Review, 35(3), 336–356. https://doi.org/10.1177/0894439316631043
Jungherr, A., & Theocharis, Y. (2017). The Empiricist’s challenge: Asking meaningful questions in political science in the age of Big Data. Journal of Information Technology & Politics, 14(1), 97–109. https://doi.org/10.1080/19331681.2017.1312187
Jürgens, P., Stark, B., & Magin, M. (2020). Two half-truths make a whole? On bias in self-reports and tracking data. Social Science Computer Review, 38(5), 600–615. https://doi.org/10.1177/0894439319831643
Kersting, N. (2016). Politische Online-Beteiligung im internationalen Vergleich. Eine Revitalisierung politischer Beteiligung? Zeitschrift für Vergleichende Politikwissenschaft, 10(2 supplement), 91–113. https://doi.org/10.1007/s12286-016-0290-0
King, G. (2011). Ensuring the data-rich future of the social sciences. Science, 331(6018), 719–721. https://doi.org/10.1126/science.1197872
King, G., Pan, J., & Roberts, M. E. (2013). How censorship in China allows government criticism but silences collective expression. American Political Science Review, 107(2), 326–343. https://doi.org/10.1017/S0003055413000014
King, G., Pan, J., & Roberts, M. E. (2017). How the Chinese government fabricates social media posts for strategic distraction, not engaged argument. American Political Science Review, 111(3), 484–501. https://doi.org/10.1017/S0003055417000144
Kitchin, R., & Lauriault, T. P. (2015). Small data in the era of big data. GeoJournal, 80, 463–475. https://doi.org/10.1007/s10708-014-9601-7
Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google flu: Traps in big data analysis. Science, 343(6176), 1203–1205. https://doi.org/10.1126/science.1248506
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., et al. (2009). Computational social science. Science, 323(5915), 721–723. https://doi.org/10.1126/science.1167742
Lorenz-Spreen, P., Mønsted, B. M., Hövel, P., & Lehmann, S. (2019). Accelerating dynamics of collective attention. Nature Communications, 10(1759), 1–9. https://doi.org/10.1038/s41467-019-09311
Lu, Y., & Pan, J. (2021). Capturing clicks: How the Chinese government uses clickbait to compete for visibility. Political Communication, 38(1–2), 23–54. https://doi.org/10.1080/10584609.2020.1765914
Lutscher, P. M., Weidmann, N. B., Roberts, M. E., Jonker, M., & King, A. (2020). At home and abroad: The use of Denial-of-service attacks during elections in nondemocratic regimes. Journal of Conflict Resolution, 64(2–3), 373–401. https://doi.org/10.1177/0022002719861676
Macy, M. W., & Willer, R. (2002). From factors to actors: Computational sociology and agent-based modeling. Annual Review of Sociology, 28, 143–166. https://doi.org/10.1146/annurev.soc.28.110601.141117
Miller, J. H., & Page, S. E. (2007). Complex adaptive systems: An introduction to computational models of social life. Princeton University Press.
Munger, K. (2017). Tweetment effects on the tweeted: Experimentally reducing racist harassment. Political Behavior, 39(3), 629–649. https://doi.org/10.1007/s11109-016-9373-5
Neuman, W. R., Guggenheim, L., Jang, S. M., & Bae, S. Y. (2014). The dynamics of public attention: Agenda-setting theory meets big data. Journal of Communication, 64(2), 193–214. https://doi.org/10.1111/jcom.12088
Piper, A. (2018). Enumerations: Data and literary study. The University of Chicago Press.
Posegga, O., & Jungherr, A. (2019). Characterizing political talk on Twitter: A comparison between public agenda, media agendas, and the twitter agenda with regard to topics and dynamics. In HICSS 2019: Proceedings of the 52nd Hawaii international conference on system science (S. 2590–2599). University of Hawaii at Manoa: Scholarspace. https://doi.org/10.24251/HICSS.2019.312
Puschmann, C. (2019). An end to the wild west of social media research: A response to Axel Bruns. Information, Communication & Society, 22(11), 1582–1589. https://doi.org/10.1080/1369118X.2019.1646300
Rainie, L., & Wellman, B. (2012). Networked: The new social operating system. The MIT Press.
Rauchfleisch, A., & Kaiser, J. (2020). The German far-right on YouTube: An analysis of user overlap and user comments. Journal of Broadcasting & Electronic Media, 64(3), 373–396. https://doi.org/10.1080/08838151.2020.1799690
Rauchfleisch, A., Siegen, D., & Vogler, D. (2021). How COVID-19 displaced climate change: Mediated climate change activism and issue attention in the Swiss media and online sphere. Environmental Communication., Online First. https://doi.org/10.1080/17524032.2021.1990978
Rauh, C., & Schwalbach, J. (2020). The ParlSpeech V2 data set: Full-text corpora of 6.3 million parliamentary speeches in the key legislative chambers of nine representative democracies. Harvard Dataverse. https://doi.org/10.7910/DVN/L4OAKN
Rivero, G. (2019). Preaching to the choir: Ideology and following behaviour in social media. Contemporary Social Science, 14(1), 54–70. https://doi.org/10.1080/21582041.2017.1325924
Salganik, M. J. (2018). Bit by bit: Social research in the digital age. Princeton University Press.
Salganik, M. J., Dodds, P. S., & Watts, D. J. (2006). Experimental study of inequality and unpredictability in an artificial cultural market. Science, 311(5762), 854–856. https://doi.org/10.1126/science.1121066
Salganik, M. J., & Watts, D. J. (2009). Web-based experiments for the study of collective social dynamics in cultural markets. Topics in Cognitive Science, 1(3), 439–468. https://doi.org/10.1111/j.1756-8765.2009.01030.x
Scharkow, M., Mangold, F., Stier, S., & Breuer, J. (2020). How social network sites and other online intermediaries increase exposure to news. PNAS: Proceedings of the National Academy of Sciences of the United States of America, 117(6), 2761–2763. https://doi.org/10.1073/pnas.1918279117
Stier, S., Breuer, J., Siegers, P., & Thorson, K. (2020). Integrating survey data and digital trace data: Key issues in developing an emerging field. Social Science Computer Review, 38(5), 503–516. https://doi.org/10.1177/0894439319843669
Stier, S., Posch, L., Bleier, A., & Strohmaier, M. (2017). When populists become popular: Comparing Facebook use by the right-wing movement Pegida and German political parties. Information, Communication & Society, 20(9), 1365–1388. https://doi.org/10.1080/1369118X.2017.1328519
Subhayan Mukerjee, S. G.-B., & Majó-Vázquez, Sı́lvia. (2018). Networks of audience overlap in the consumption of digital news. Journal of Communication, 68(1), 26–50. https://doi.org/10.1093/joc/jqx007
Theocharis, Y., Barberá, P., Fazekas, Z., Popa, S. A., & Parnet, O. (2016). A bad workman blames his tweets: The consequences of citizens’ uncivil Twitter use when interacting with party candidates. Journal of Communication, 66(6), 1007–1031. https://doi.org/10.1111/jcom.12259
Theocharis, Y., & Jungherr, A. (2021). Computational social science and the study of political communication. Political Communication, 38(1–2), 1–22. https://doi.org/10.1080/10584609.2020.1833121
Theocharis, Y., Lowe, W., van Deth, J. W., & Garcı́a-Albacete, G. (2015). Using Twitter to mobilize protest action: Online mobilization patterns and action repertoires in the Occupy Wall Street, Indignados, and Aganaktismenoi movements. Information, Communication & Society, 18(2), 202–220. https://doi.org/10.1080/1369118X.2014.948035
Theocharis, Y., Vitoratou, S., & Sajuria, J. (2017). Civil society in times of crisis: Understanding collective action dynamics in digitally-enabled volunteer networks. Journal of Computer-Mediated Communication, 22(5), 248–265. https://doi.org/10.1111/jcc4.12194
Underwood, T. (2019). Distant horizons: Digital evidence and literary change. The University of Chicago Press.
Vargo, C. J., Guo, L., & Amazeen, M. A. (2018). The agenda-setting power of fake news: A big data analysis of the online media landscape from 2014 to 2016. New Media & Society, 20(5), 2028–2049. https://doi.org/10.1177/1461444817712086
Waldherr, A. (2014). Emergence of news waves: A social simulation approach. Journal of Communication, 64(5), 852–873. https://doi.org/10.1111/jcom.12117
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.
Watts, D. J. (2011). Everything is obvious: How common sense fails us. Random House.
Weidmann, N. B., Benitez-Baleato, S., Hunziker, P., Glatz, E., & Dimitropoulos, X. (2016). Digital discrimination: Political bias in Internet service provision across ethnic groups. Science, 353(6304), 1151–1155. https://doi.org/10.1126/science.aaf5062
Weidmann, N. B., & Rød, E. G. (2019). The internet and political protest in autocracies. Oxford University Press.
Weidmann, N. B., & Schutte, S. (2017). Using night light emissions for the prediction of local wealth. Journal of Peace Research, 54(2), 125–140. https://doi.org/10.1177/0022343316630359
Williams, N. W., Casas, A., & Wilkerson, J. D. (2020). Images as data for social science research. Cambridge University Press. https://doi.org/10.1017/9781108860741
Windsor, L. C. (2021). Advancing interdisciplinary work in computational communication science. Political Communication, 38(1–2), 182–191. https://doi.org/10.1080/10584609.2020.1765915
Wuttke, A. (2019). Why too many political science findings cannot be trusted and what we can do about it: A review of meta-scientific research and a call for academic reform. Politische Vierteljahresschrift, 60(1), 1–19. https://doi.org/10.1007/s11615-018-0131-7
Yang, T., Majó-Vásquez, S., Nielsen, R. K., & González-Bailón, S. (2020). Exposure to news grows less fragmented with an increase in mobile access. PNAS: Proceedings of the National Academy of Sciences of the United States of America, 117(46), 28678–28683. https://doi.org/10.1073/pnas.2006089117
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this entry
Cite this entry
Jungherr, A., Posegga, O. (2023). Computational Social Science. In: Kersting, N., Radtke, J., Baringhorst, S. (eds) Handbuch Digitalisierung und politische Beteiligung. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-31480-4_54-1
Download citation
DOI: https://doi.org/10.1007/978-3-658-31480-4_54-1
Received:
Accepted:
Published:
Publisher Name: Springer VS, Wiesbaden
Print ISBN: 978-3-658-31480-4
Online ISBN: 978-3-658-31480-4
eBook Packages: Springer Referenz Sozialwissenschaften & Recht