Skip to main content

Datenvisualisierung für Exploration und Inferenz

  • 618 Accesses

Part of the Springer Reference Sozialwissenschaften book series (SRS)

Zusammenfassung

Datenvisualisierung ist eine der effektivsten Methoden, um quantitative Information zu explorieren, zu beschreiben und zu kommunizieren. Dieser Beitrag diskutiert, welche Ziele Datenvisualisierung verfolgt und was sie zu einem analytischen Werkzeug macht. Zum einen wird Visualisierung für den wichtigen Schritt der Datenexploration beschrieben. Exemplarisch wird dabei vor allem auf table plots, parallel coordinate plots und small multiple designs eingegangen, die sich für die Visualisierung mehrdimensionaler Datenstrukturen eignen. Zum anderen werden visuelle Methoden der Inferenz in den Blick genommen: visuelle statistische Inferenz, in welcher Grafiken den Platz von Teststatistiken einnehmen, die Visualisierung inferentieller Unsicherheit und statistischer Modelle, sowie schließlich die Exploration von Modellunsicherheit.

Schlüsselwörter

  • Datenvisualisierung
  • Explorative Datenanalyse
  • Statistische Grafiken
  • Statistische Inferenz
  • Visuelle Inferenz

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14
Abb. 15
Abb. 16
Abb. 17
Abb. 18
Abb. 19
Abb. 20
Abb. 21

Notes

  1. 1.

    Das Eingangsbeispiel ist eine alternative Version von Anscombe’s (1973) klassischem Quartett, welches Forschern seit Jahrzehnten als Warnung dafür dient, Daten ‚unbesehen‘ zu modellieren.

  2. 2.

    Allerdings stellen zwei zentrale visuelle Methoden der univariaten Datenexploration – das Histogramm und der Box Plot – bereits Datenabstraktionen dar. Im ersten Fall durch die Klasseneinteilung und im zweiten Fall durch die erfolgende Zusammenfassung einer Verteilung anhand von fünf Werten plus eventuellen Ausreißern. Dadurch wird Informationsgehalt reduziert, und es ist durchaus möglich, wichtige Aspekte der Daten zu übersehen.

  3. 3.

    Die Daten stammen aus dem DFG-Projekt „Parlamentskandidaten in den Deutschen Bundesländern: Sozio-demographischer Hintergrund, Rekrutierung, Einstellungen, und Wahlkampf“. Ich danke Thomas Zittel für die freundliche Bereitstellung der Daten.

  4. 4.

    Ich danke Hårvard Hegre und Espen Rød für die freundliche Bereitstellung des Datensatzes.

Literatur

  • Adolph, Christopher. 2003. Visual interpretation and presentation of monte carlo results. Political Methodologist 11(1): 31.

    Google Scholar 

  • Anscombe, Francis J. 1973. Graphs in statistical analysis. American Statistician 27(1): 17–21.

    Google Scholar 

  • Becker, Richard A., William S. Cleveland, und Ming-Jen Shyu. 1996. The visual design and control of trellis display. Journal of Computational and Graphical Statistics 5(2): 123–155.

    Google Scholar 

  • Bertin, Jacques. 1983. Semiology of graphics: Diagrams, networks, maps. Madison: University of Wisconsin Press.

    Google Scholar 

  • Bowers, Jake. 2004. Using R to keep it simple. Exploring structure in multilevel datasets. The Political Methodologist 12:17–24.

    Google Scholar 

  • Bowers, Jake, und Katherine W. Drake. 2005. EDA for HLM: Visualization when probabilistic inference fails. Political Analysis 13(4): 301–326.

    CrossRef  Google Scholar 

  • Brambor, Thomas, William R. Clark, und Matt Golder. 2006. Understanding interaction models: Improving empirical analyses. Political Analysis 14(1): 63–82.

    CrossRef  Google Scholar 

  • Brunner, Katharina, Christian Endt, Sascha Goldhofer, und Martina Schories. 2017. Wie wir über Wahlumfragen berichten. Süddeutsche Zeitung, 27.04.2017.

    Google Scholar 

  • Buja, Andreas, Diane Cook, Heike Hofmann, Michael Lawrence, Eun-Kyung Lee, Deborah F. Swayne, und Hadley Wickham. 2009. Statistical inference for exploratory data analysis and model diagnostics. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 367(1906): 4361–4383.

    CrossRef  Google Scholar 

  • Cleveland, William S. 1994. The elements of graphing data, Rev. 2nd ed. Summit: Hobart Press.

    Google Scholar 

  • Cleveland, William S., und Robert McGill. 1984. Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association 79(387): 531–554.

    CrossRef  Google Scholar 

  • Cook, Dianne, und Deborah F. Swayne. 2007. Interactive and dynamic graphics for data analysis with R and Ggobi. New York: Springer.

    CrossRef  Google Scholar 

  • Cook, R. Dennis, und Sanford Weisberg. 1999. Applied regression including computing and graphics. New York: Wiley.

    CrossRef  Google Scholar 

  • Cook, Dianne, Eun-Kyung Lee, und Mahbubul Majumder. 2016. Data visualization and statistical graphics in big data analysis. Annual Review of Statistics and Its Application 3:133–159.

    CrossRef  Google Scholar 

  • Correll, Michael, und Michael Gleicher. 2014. Error bars considered harmful: Exploring alternate encodings for mean and error. IEEE Transactions on Visualization and Computer Graphics 20(12): 2142–2151.

    CrossRef  Google Scholar 

  • Few, Stephen. 2009. Now you see it. Simple visualization techniques for quantitative analysis. Oakland: Analytics Press.

    Google Scholar 

  • Few, Stephen. 2012. Show me the numbers: Designing tables and graphs to enlighten. Oakland: Analytics Press.

    Google Scholar 

  • Friendly, Michael. 2008. A brief history of data visualization. In Handbook of data visualization, 15–56. Berlin/Heidelberg: Springer.

    CrossRef  Google Scholar 

  • Friendly, Michael. 2009. Milestones in the history of thematic cartography, statistical graphics, and data visualization. Unveröffentlichtes Manuskript.

    Google Scholar 

  • Gelman, Andrew. 2003. A bayesian formulation of exploratory data analysis and goodness-of-fit testing. International Statistical Review 71:369–382.

    CrossRef  Google Scholar 

  • Gelman, Andrew. 2004. Exploratory data analysis for complex models. Journal of Computational and Graphical Statistics 13(4): 755–779.

    CrossRef  Google Scholar 

  • Gelman, Andrew. 2009. Hard sell for bayes. Blogpost. https://andrewgelman.com/2009/07/15/hard_sell_for_b/. Zugegriffen am 20.11.2018.

  • Gelman, Andrew, und Jennifer Hill. 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gelman, Andrew, und Antony Unwin. 2013. Infovis and statistical graphics: Different goals, different looks. Journal of Computational and Graphical Statistics 22(1): 2–28.

    CrossRef  Google Scholar 

  • Gelman, Andrew, Cristian Pasarica, und Rahul Dodhia. 2002. Let’s practice what we preach: Turning tables into graphs. The American Statistician 56(2): 121–130.

    CrossRef  Google Scholar 

  • Greenhill, Brian, Michael D. Ward, und Audrey Sacks. 2011. The separation plot: A new visual method for evaluating the fit of binary models. American Journal of Political Science 55(4): 990–1002.

    CrossRef  Google Scholar 

  • Healy, Kieran, und James Moody. 2014. Data visualization in sociology. Annual Review of Sociology 40:105–128.

    CrossRef  Google Scholar 

  • Heer, Jeffrey, und Michael Bostock. 2010. Crowdsourcing graphical perception: Using mechanical turk to assess visualization design. In Proceedings of the SIGCHI conference on human factors in computing systems, 203–212. ACM.

    Google Scholar 

  • Hurley, Catherine B. 2004. Clustering visualizations of multidimensional data. Journal of Computational and Graphical Statistics 13(4): 788–806.

    CrossRef  Google Scholar 

  • Inglehart, Ronald, und Christian Welzel. 2005. Modernization, cultural change, and democracy: The human development sequence. Cambridge: Cambridge University Press.

    CrossRef  Google Scholar 

  • Inselberg, Alfred. 2008. Parallel coordinates: Visualization, exploration and classification of high-dimensional data. In Handbook of data visualization, Hrsg. C. Chen, W. K. Härdle und A. Unwin, 643–680. Berlin: Springer.

    CrossRef  Google Scholar 

  • Jackson, Christopher H. 2008. Displaying uncertainty with shading. The American Statistician 62(4): 340–347.

    CrossRef  Google Scholar 

  • Jacoby, William G. 1997. Statistical graphics for univariate and bivariate data. Thousand Oaks: Sage.

    CrossRef  Google Scholar 

  • Jacoby, William G. 2000. Loess: A nonparametric, graphical tool for depicting relationships between variables. Electoral Studies 19:577–613.

    CrossRef  Google Scholar 

  • Kastellec, Jonathan, und Eduardo Leoni. 2007. Using graphs instead of tables in political science. Perspectives on Politics 5(4): 755–771.

    CrossRef  Google Scholar 

  • Keim, Daniel, und Matthew Ward. 2003. Visualization. In Intelligent data analysis. An intreoduction, Hrsg. Michael Berthold und David J. Hand. New York: Springer.

    Google Scholar 

  • Kerman, Jouni, Andrew Gelman, Tian Zheng, und Yuejing Ding. 2008. Visualization in Bayesian Data Analysis. In Handbook of Data Visualization, Hrsg. C. Chen, W. K. Härdle und A. Unwin, 709–724. Berlin: Springer.

    CrossRef  Google Scholar 

  • King, Gary, Michael Tomz, und Jason Wittenberg. 2000. Making the most of statistical analyses: Improving interpretation and presentation. American Journal of Political Science 44(2): 347–361.

    CrossRef  Google Scholar 

  • Kirk, Andy. 2016. Data visualisation. A handbook for data driven design. London: Sage.

    Google Scholar 

  • Kosslyn, Stephen M. 1994. Elements of graph design. New York: WH Freeman.

    Google Scholar 

  • Majumder, Mahbubul, Heike Hofmann, und Dianne Cook. 2013. Validation of visual statistical inference, spplied to linear models. Journal of the American Statistical Association 108(503): 942–956.

    CrossRef  Google Scholar 

  • Munzert, Simon, Lukas Stötzer, Thomas Gschwend, Marcel Neunhoeffer, und Sebastian Sternberg. 2017. Zweitstimme.org. Ein strukturell-dynamisches Vorhersagemodell für Bundestagswahlen. Politische Vierteljahresschrift 58(3): 418–441.

    CrossRef  Google Scholar 

  • Neumayer, Eric und Thomas Plümper. 2017. Robustness tests for quantitative research. Cambridge: Cambridge University Press.

    Google Scholar 

  • Playfair, William. 1786. Commercial and political atlas: Representing, by copper-plate charts, the progress of the commerce, revenues, expenditure, and debts of England, during the whole of the eighteenth century. London: Corry.

    Google Scholar 

  • Playfair, William. 1801. The commercial and political atlas: Representing, by means of stained copper-plate charts, the progress of the commerce, revenues, expenditure and debts of England during the whole of the eighteenth century. T. Burton.

    Google Scholar 

  • Shih, Victor, Christopher Adolphe, und Mingxing Liu. 2012. Getting ahead in the communist party: Explaining the advancement of central committee members in China. American Political Science Review 106(1): XXXX.

    CrossRef  Google Scholar 

  • Shneiderman, Ben. 1996. The eyes have it: A task by data type taxonomy for information visualizations, 336–343. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3922. Zugegriffen am 20.11.2018.

  • Spiegelhalter, David, Mike Pearson, und Ian Short. 2011. Visualizing uncertainty about the future. Science 333(6048): 1393–1400.

    CrossRef  Google Scholar 

  • Tennekes, Martijn, Jonge de Edwin, und Piet J. H. Daas. 2013. Visualizing and inspecting large datasets with tableplots. Journal of Data Science 11(1): 43–58.

    Google Scholar 

  • Theus, Martin, und Simon Urbanek. 2009. Interactive graphics for data analysis: Principles and examples. Boca Raton: CRC Press.

    Google Scholar 

  • Tufte, Edward. 2001. The visual display of quantitative information, 2. Aufl. Graphics Press.

    Google Scholar 

  • Tufte, Edward. 2006. Beautiful evidence. Graphics Press.

    Google Scholar 

  • Tukey, John W. 1977. Exploratory data analysis. Reading: Addison-Wesley.

    Google Scholar 

  • Unwin, Antony. 2015. Graphical data analysis with R. Boca Raton: CRC Press.

    CrossRef  Google Scholar 

  • Unwin, Antony, Chis Volinsky, und Sylvia Winkler. 2003. Parallel coordinates for exploratory modelling analysis. Computational Statistics & Data Analysis 43(4): 553–564.

    CrossRef  Google Scholar 

  • Unwin, Antony, Martin Theus, und Heike Hofmann. 2006. Graphics of large datasets: Visualizing a million. New York: Springer Science & Business Media.

    CrossRef  Google Scholar 

  • Ware, Colin. 2013. Information visualization. Perception for design, 3. Aufl. Morgan Kaufmann.

    Google Scholar 

  • Wegman, Edward J. 1990. Hyperdimensional data analysis using parallel coordinates. Journal of the American Statistical Association 85(411): 664–675.

    CrossRef  Google Scholar 

  • Welzel, Christian, Ronald Inglehart, und Hans-Dieter Klingemann. 2003. The theory of human development: A cross-cultural analysis. European Journal of Political Research 42(3): 341–379.

    CrossRef  Google Scholar 

  • Wickham, Hadley. 2007. Exploratory model analysis with R and GGobi. JSM Proceedings 2007.

    Google Scholar 

  • Wickham, Hadley. 2010. A layered grammar of graphics. Journal of Computational and Graphical Statistics 19(1): 3–28.

    CrossRef  Google Scholar 

  • Wickham, Hadlely, Dianne Cook, Heike Hofmann, und Andreas Buja. 2010. Graphical Inference for InfoVis. Transactions on Visualization and Computer Graphics 16:973–979.

    Google Scholar 

  • Wickham, Hadley, Dianne Cook, und Heike Hoffmann. 2015. Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8:203–225.

    CrossRef  Google Scholar 

  • Wilkinson, Leland. 2005. The grammar of graphics, 2. Aufl. New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Traunmüller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Traunmüller, R. (2019). Datenvisualisierung für Exploration und Inferenz. In: Wagemann, C., Goerres, A., Siewert, M. (eds) Handbuch Methoden der Politikwissenschaft. Springer Reference Sozialwissenschaften. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-16937-4_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-16937-4_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer VS, Wiesbaden

  • Print ISBN: 978-3-658-16937-4

  • Online ISBN: 978-3-658-16937-4

  • eBook Packages: Springer Referenz Sozialwissenschaften & Recht