Advertisement

Computergestützte Textanalysen

  • Sven-Oliver Proksch
Living reference work entry
Part of the Springer Reference Sozialwissenschaften book series (SRS)

Zusammenfassung

Texte stellen eine der bedeutsamsten Datenquellen in der Politikwissenschaft dar. Mit der computergestützten Textanalyse steht Politikwissenschaftlern ein immer mächtigeres Werkzeug zur Verfügung, um alte und neue Fragen aus verschiedenen Subdisziplinen der Politikwissenschaft zu beantworten. Diese Methoden werden konstant weiterentwickelt und verfeinert, während gleichzeitig immer mehr Textdaten auch elektronisch zur Verfügung stehen. Der vorliegende Beitrag beschreibt die Annahmen und grundsätzlichen Vorgehensweisen und bietet einen Überblick über die wichtigsten computergestützten Textanalyseverfahren von der wörterbuchbasierten Analyse bis hin zu Textskalierung, Textklassifikation und Topic Models. Zudem wird auf geeignete Software verwiesen. Anschließend werden vier politikwissenschaftliche Anwendungsbereiche vorgestellt und mehrere methodische Herausforderungen diskutiert.

Schlüsselwörter

Automatisierte Textanalyse Textskalierung Maschinelles Lernen Topic-Modelle Politische Positionen 

Literatur

  1. Atteveldt, Van, Jan Kleinnijenhuis Wouter, Nel Ruigrok, und Stefan Schlobach. 2008. Good news or bad news? Conducting sentiment analysis on Dutch text to distinguish between positive and negative relations. Journal of Information Technology & Politics 5(1): 73–94.CrossRefGoogle Scholar
  2. Benoit, Kenneth. 2017. quanteda: Quantitative analysis of textual data.  https://doi.org/10.5281/zenodo.1004683, R package version 0.99.22. http://quanteda.io.
  3. Benoit, Kenneth, und Michael Laver. 2008. Compared to What? A Comment on ‚A Robust Transformation Procedure for Interpreting Political Text‘ by Martin und Vanberg. Political Analysis 16(1): 101–111.CrossRefGoogle Scholar
  4. Bernauer, Julian, und Thomas Bräuninger. 2009. Intra-Party Preference Heterogeneity und Faction Membership in the 15th German Bundestag: A Computational Text Analysis of Parliamentary Speeches. German Politics 18(3): 385–402.CrossRefGoogle Scholar
  5. Blei, David, Andrew Ng, und Michael Jordan. 2003. Latent dirichlet allocation. Journal of Machine Learning Research 3:993–1022.Google Scholar
  6. Budge, Ian, und Paul Pennings. 2007. Do they work? Validating computerised word frequency estimates against policy series. Electoral Studies 26(1): 121–129.CrossRefGoogle Scholar
  7. Bunea, Adriana, und Raimondas Ibenskas. 2015. Quantitative text analysis und the study of EU lobbying und interest groups. European Union Politics 16(3): 429–455.CrossRefGoogle Scholar
  8. Collingwood, Loren, und John Wilkerson. 2012. Tradeoffs in Accuracy und Efficiency in Supervised Learning Methods. Journal of Information Technology & Politics 9(3): 298–318.CrossRefGoogle Scholar
  9. Debus, Marc. 2009. Pre-Electoral Commitments und Government Formation. Public Choice 138(1–2): 45–64.CrossRefGoogle Scholar
  10. Denny, Matthew J., und Arthur Spirling. 2018. Text preprocessing for unsupervised learning: Why it matters, when it misleads, and what to do about it. Political Analysis.CrossRefGoogle Scholar
  11. DiMaggio, Paul. 2015. Adapting computational text analysis to social science (and vice versa). Big Data & Society 1–5. First published December 1, 2015.Google Scholar
  12. Egami, Naoki, Christian J. Fong, Justin Grimmer, Margaret E. Roberts, und Brandon M. Stewart. 2017. How to make causal inferences using texts. Working Paper.Google Scholar
  13. Flesch, Rudolf. 1948. A new readability yardstick. Journal of Applied Psychology 32(3): 221–233.CrossRefGoogle Scholar
  14. Gianetti, Daniela, und Michael Laver. 2005. Policy Positions und Jobs in the Government. European Journal of Political Research 44:91–120.CrossRefGoogle Scholar
  15. Grimmer, Justin. 2010. A Bayesian hierarchical topic model for political texts: Measuring expressed agendas in senate press releases. Political Analysis 18(1): 1–35.CrossRefGoogle Scholar
  16. Grimmer, Justin, und Brandon Stewart. 2013. Text as Data: The Promise und Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis 21(3): 267–297.CrossRefGoogle Scholar
  17. Hakhverdian, Armèn. 2009. Capturing government policy on the left-right scale: Evidence from the United Kingdom, 1956–2006. Political Studies 57:720–745.CrossRefGoogle Scholar
  18. Haselmayer, Martin, und Marcelo Jenny. 2017. Sentiment analysis of political communication: Combining a dictionary approach with crowdcoding. Quality and Quantity 51:2623–2646.CrossRefGoogle Scholar
  19. Herzog, Alexander, und Kenneth Benoit. 2015. The most unkindest cuts: Speaker selection und expressed government dissent during economic crisis. Journal of Politics 77(4): 1157–1175.CrossRefGoogle Scholar
  20. Klemmensen, Robert, Sara B. Hobolt, und Martin E. Hansen. 2007. Estimating policy positions using political texts: An evaluation of the wordscores approach. Electoral Studies 26:746–755.CrossRefGoogle Scholar
  21. Lauderdale, Benjamin E., und Alexander Herzog. 2016. Measuring political positions from legislative speech. Political Analysis 24(3): 374–394.CrossRefGoogle Scholar
  22. Laver, Michael, und John Garry. 2000. Estimating policy positions from political texts. American Journal of Political Science 44(3): 619–634.CrossRefGoogle Scholar
  23. Laver, Michael, Kenneth Benoit, und John Garry. 2003. Extracting policy positions from political texts using words as data. American Political Science Review 97(2): 311–332.CrossRefGoogle Scholar
  24. Lo, James, Sven-Oliver Proksch, und Jonathan B. Slapin. 2016. Ideological clarity in multiparty competition: A new measure und test using election manifestos. British Journal of Political Science 46(3): 591–610.CrossRefGoogle Scholar
  25. Lowe, Will. 2008. Understanding wordscores. Political Analysis 16(4): 356–371.CrossRefGoogle Scholar
  26. Lowe, Will. 2017. Putting it all on the line: Some unified theory for text scaling. Working Paper.Google Scholar
  27. Lucas, Christopher, Richard Nielsen, Margeret Roberts, Brandon Stewart, Alex Storer, und Dustin Tingley. 2015. Computer-assisted text analysis for comparative politics. Political Analysis 23(2): 254–277.CrossRefGoogle Scholar
  28. Martin, Lanny W., und Georg Vanberg. 2008. A robust transformation procedure for interpreting political text. Political Analysis 16(1): 93–100.CrossRefGoogle Scholar
  29. Munzert, Simon, Christian Rubba, Peter Meißner, und Dominic Nyhuis. 2014. Automated data collection with R – A practical guide to web scraping and text mining. Chichester: Wiley.Google Scholar
  30. Proksch, Sven-Oliver, und Jonathan B. Slapin. 2006. Institutions und Coalition Formation: The German election of 2005. West European Politics 29(3): 540–559.CrossRefGoogle Scholar
  31. Proksch, Sven-Oliver, und Jonathan B. Slapin. 2010. Position taking in European Parliament speeches. British Journal of Political Science 40(3): 587–611.CrossRefGoogle Scholar
  32. Proksch, Sven-Oliver, und Jonathan B. Slapin. 2012. Institutional foundations of legislative speech. American Journal of Political Science 56(3): 520–537.CrossRefGoogle Scholar
  33. Proksch, Sven-Oliver, und Jonathan B. Slapin. 2015. The Politics of Parliamentary Debate: Parties, Rebels, und Representation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. Quinn, Kevin M., Burt L. Monroe, Michael Colaresi, Michael H. Crespin, und Dragomir Radev. 2010. How to analyze political attention with minimal assumptions und costs. American Journal of Political Science 54(1): 209–228.CrossRefGoogle Scholar
  35. Roberts, Margeret E., Brandon Stewart, Dustin Tingley, Christopher Lucas, Jetson Leder-Luis, Shana Gadarian, Bethany Albertson, und David Rand. 2014. Structural topic models for open-ended survey responses. American Journal of Political Science 58(4): 1064–1082.CrossRefGoogle Scholar
  36. Slapin, Jonathan B., und Sven-Oliver Proksch. 2008. A scaling model for estimating time-series party positions from texts. American Journal of Political Science 52(3): 705–722.CrossRefGoogle Scholar
  37. Slapin, Jonathan B., und Sven-Oliver Proksch. 2014. Words as data: Content analysis in legislative studies. In The Oxford handbook of legislative studies, Hrsg. S. Martin, T. Saalfeld und K. Strom. Oxford: Oxford University Press.Google Scholar
  38. Soroka, Stuart. 2006. Good News und Bad News: Asymmetric Responses to Economic Information. Journal of Politics 68(2): 372–385.CrossRefGoogle Scholar
  39. Soroka, Stuart. 2012. The Gatekeeping Function: Distributions of Information in Media und the Real World. Journal of Politics 74(2): 514–528.CrossRefGoogle Scholar
  40. Soroka, Stuart. 2014. Negativity in Democratic Politics: Causes und Consequences. Cambridge Studies in Public Opinion und Political Psychology. New York: Cambridge University Press.Google Scholar
  41. Soroka, Stuart, Lori Young, und Meital Balmas. 2015a. Bad news or mad news? Sentiment scoring of negativity, fear, and anger in news content. The Annals of the American Academy of Political and Social Science 659(1): 108–121.CrossRefGoogle Scholar
  42. Soroka, Stuart, Dominik A. Stecula, und Christopher Wlezien. 2015b. It’s (Change in) the (future) economy, stupid: Economic indicators, the media, and public opinion. American Journal of Political Science 59(2): 457–474.CrossRefGoogle Scholar
  43. Spirling, Arthur. 2016. Democratization of linguistic complexity: The effect of Franchise extension on parliamentary discourse, 1832–1915. Journal of Politics 78(1): 120–136.CrossRefGoogle Scholar
  44. Wilkerson, John, David Smith, und Nicholas Stramp. 2015. Tracing the flow of policy ideas in legislatures: A text reuse approach. American Journal of Political Science 59:943–956.CrossRefGoogle Scholar
  45. Young, Lori, und Stuart Soroka. 2012. Affective news: The automated coding of sentiment in political texts. Political Communication 29:205–231.CrossRefGoogle Scholar
  46. Zipf, George Kingsley. 1935. The psycho-biology of language. An introduction to dynamic philology. Boston: Mifflin.Google Scholar
  47. Zipf, George Kingsley. 1949. Human behavior und the principle of least effort. An introduction to human ecology. Cambridge, MA: Addison-Wesley.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Cologne Center for Comparative Politics, Wirtschafts- und Sozialwissenschaftliche FakultätUniversität zu KölnKölnDeutschland

Personalised recommendations