Skip to main content

Forecasting

  • 477 Accesses

Part of the Springer Reference Sozialwissenschaften book series (SRS)

Zusammenfassung

Prognosen stellen in der Politikwissenschaft ein zwar noch kleines, aber stetig wachsendes Forschungsfeld dar, welches in verschiedenen Teilbereichen der Disziplin Anwendung findet. Gemeint sind hiermit statistische Modelle, mit denen explizit politikwissenschaftlich relevante Phänomene vor ihrem Eintreten vorhergesagt werden. Dabei folgen sie den wissenschaftlichen Leitlinien der intersubjektiven Nachvollziehbarkeit und Reproduzierbarkeit. Dieser Beitrag führt ein in die Grundlagen politikwissenschaftlicher Prognosen. Den Schwerpunkt der Darstellung bilden Wahlprognosen, insbesondere strukturelle Modelle, welche beispielhaft anhand eines kanonischen Wahlprognosemodells erläutert werden. Daneben werden synthetische Modelle, Aggregationsmodelle, „Wisdom of the crowd“-Ansätze und Prognosemärkte diskutiert.

Schlüsselwörter

  • Forecasting
  • Prognosen
  • Quantitative Methoden
  • Wahlprognosen
  • Konfliktforschung

Ich bedanke mich herzlich bei Michael Herrmann und Achim Goerres für inhaltliche Anmerkungen und Kritik sowie bei Erich Wenker für Lektorat und Korrektur.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    Aufgrund der besseren Lesbarkeit wird in diesem Beitrag der Einfachheit halber nur die weibliche Form verwendet. Die männliche Form ist selbstverständlich immer mit eingeschlossen.

  2. 2.

    Andere Versionen dieses Modells enthalten statt dieser Variablen eine Dummy-Variable, die anzeigt, ob die amtierende Präsidentin bereits zwei Amtszeiten im Amt war.

  3. 3.

    Für eine Erläuterung des Jury Theorems siehe Nurmi (2002).

  4. 4.

    Die Odds einer Wette auf das Eintreten eines Ereignisses E entsprechen der Wahrscheinlichkeit, dass das Ergebnis nicht eintritt relativ zur Wahrscheinlichkeit, dass es eintritt:\( \frac{1-p(E)}{p(E)} \). Hieraus ergibt sich auch der Auszahlungsbetrag.

  5. 5.

    Für eine genauere Erläuterung der Funktionsweise von Prognosemärkten und einigen Beispielen siehe Wolfers und Zitzewitz (2004), sowie Berg et al. (2008).

  6. 6.

    Während bayesianische Verfahren und Ansätze aus dem Machine Learning in ersten Anwendungen vielversprechende Ergebnisse liefern, hat was das Potenzial von Daten aus dem Internet, insbesondere Social Media, angeht bereits Ernüchterung eingesetzt (Huberty 2015).

Literatur

  • Abramowitz, Alan I. 2012. Forecasting in a polarized era: The time for change model and the 2012 presidential election. PS: Political Science & Politics 45(4): 618–619.

    Google Scholar 

  • Armstrong, J. Scott. 2012. Illusions in regression analysis. International Journal of Forecasting 28(3): 689–694.

    CrossRef  Google Scholar 

  • Bechtel, Michael M., und Dirk Leuffen. 2010. Forecasting European union politics: Real-time forecasts in political time series analysis. European Union Politics 11(2): 309–327.

    CrossRef  Google Scholar 

  • Berg, Joyce, Robert Forsythe, Forrest Nelson, und Thomas Rietz. 2008. Results from a dozen years of election futures markets research. In Handbook of experimental economics results, Bd. 1, 742–751. Elsevier.

    Google Scholar 

  • Blumenthal, Mark. 2014. Polls, forecasts, and aggregators. PS: Political Science & Politics 47(2): 297–300.

    Google Scholar 

  • Campbell, James E. 2004. Introduction – The 2004 presidential election forecasts. PS: Political Science & Politics 37(4): 733–735.

    Google Scholar 

  • Colomer, Josep M. 2007. What other sciences look like. European Political Science 6(2): 134–142.

    CrossRef  Google Scholar 

  • Eijk, Cees van der. 2005. Election forecasting: A sceptical view. The British Journal of Politics & International Relations 7(2): 210–214.

    Google Scholar 

  • Erikson, Robert S., und Christopher Wlezien. 2012. The timeline of presidential elections: How campaigns do (and do not) matter. Chicago: University of Chicago Press.

    CrossRef  Google Scholar 

  • Erikson, Robert S., und Christopher Wlezien. 2014. Forecasting US presidential elections using economic and noneconomic fundamentals. PS: Political Science & Politics 47(2): 313–316.

    Google Scholar 

  • Fair, Ray C. 1978. The effect of economic events on votes for president. The Review of Economics and Statistics 60(2): 159–173.

    CrossRef  Google Scholar 

  • Forsythe, R., F. Nelson, G. Neumann, und J. Wright. 1989. The Iowa presidential stock market: A field experiment. In Research in experimental economics, Hrsg. R. Issac, Bd. 4. Westport: JAI Press.

    Google Scholar 

  • Foucault, Martial. 2012. Forecasting the 2012 French legislative election. French Politics 10(1): 68–83.

    CrossRef  Google Scholar 

  • Gleditsch, Kristian Skrede, und Michael D. Ward. 2013. Forecasting is difficult, especially about the future: Using contentious issues to forecast interstate disputes. Journal of Peace Research 50(1): 17–31.

    CrossRef  Google Scholar 

  • Graefe, Andreas. 2014. Accuracy of vote expectation surveys in forecasting elections. Public Opinion Quarterly 78(1): 204–232.

    CrossRef  Google Scholar 

  • Graefe, Andreas. 2015a. German election forecasting: Comparing and combining methods for 2013. German Politics 24(2): 195–204.

    CrossRef  Google Scholar 

  • Graefe, Andreas. 2015b. Improving forecasts using equally weighted predictors. Journal of Business Research 68(8): 1792–1799.

    CrossRef  Google Scholar 

  • Graefe, Andreas. 2017. The pollyVote’s long-term forecast for the 2017 German Federal Election. Political Science & Politics 50(3): 693–696.

    CrossRef  Google Scholar 

  • Graefe, Andreas, J. Scott Armstrong, Randall J. Jones Jr., und Alfred G. Cuzán. 2014. Combining forecasts: An application to elections. International Journal of Forecasting 30(1): 43–54.

    CrossRef  Google Scholar 

  • Gschwend, Thomas, und Helmut Norpoth. 2001. ‚Wenn am nächsten Sonntag.‘: Ein Prognosemodell für Bundestagswahlen. In Wahlen und Wähler: Analysen aus Anlass der Bundestagswahl 1998, Hrsg. Hans-Dieter Klingemann und Max Kaase, 473–499. Wiesbaden: Westdeutscher Verlag.

    CrossRef  Google Scholar 

  • Gschwend, Thomas, und Helmut Norpoth. 2005. Prognosemodell auf dem Prüfstand: Die Bundestagswahl 2005. Politische Vierteljahresschrift 46(4): 682–688.

    CrossRef  Google Scholar 

  • Hibbs, Douglas A. 1982. President Reagan’s mandate from the 1980 elections: A shift to the right? American Politics Research 10(4): 387–420.

    CrossRef  Google Scholar 

  • Huberty, Mark. 2015. Can we vote with our tweet? On the perennial difficulty of election forecasting with social media. International Journal of Forecasting 31(3): 992–1007.

    CrossRef  Google Scholar 

  • Kastellec, Jonathan P. 2010. The statistical analysis of judicial decisions and legal rules with classification trees. Journal of Empirical Legal Studies 7(2): 202–230.

    CrossRef  Google Scholar 

  • Kennedy, Ryan, Stefan Wojcik, und David Lazer. 2017. Improving election prediction internationally. Science 355(6324): 515–520.

    CrossRef  Google Scholar 

  • King, Gary, Michael Tomz, und Jason Wittenberg. 2000. Making the most of statistical analyses: Improving interpretation and presentation. American Journal of Political Science 44:347–361.

    CrossRef  Google Scholar 

  • Klarner, Carl. 2008. Forecasting the 2008 U.S. House, Senate and presidential elections at the district and state level. PS: Political Science and Politics 41(4): 723–728.

    Google Scholar 

  • Krueger, Joel T., und Kenneth Kuttner. 1996. The fed funds futures rate as a predictor of federal reserve policy. The Journal of Futures Markets 16(8): 865–879.

    CrossRef  Google Scholar 

  • Küntzler, Theresa. 2018. Using data combination of fundamental variable-based forecasts and poll-based forecasts to predict the 2013 German election. German Politics 27(1): 1–19.

    CrossRef  Google Scholar 

  • Leininger, Arndt. 2015. Wissenschaftliche Wahlprognosen – Alternative oder Ergänzung zu Umfragen? Zeitschrift für Parlamentsfragen 46(4): 675–691.

    CrossRef  Google Scholar 

  • Lewis-Beck, Michael S. 2005. Election forecasting: Principles and practice. The British Journal of Politics & International Relations 7(2): 145–164.

    CrossRef  Google Scholar 

  • Lewis-Beck, Michael S., und Tom W. Rice. 1992. Forecasting elections. Washington, DC: CQ Press.

    Google Scholar 

  • Lewis-Beck, Michael S., und Andrew Skalaban. 1989. Citizen forecasting: Can voters see into the future? British Journal of Political Science 19(1): 146–153.

    CrossRef  Google Scholar 

  • Lewis-Beck, Michael S., Richard Nadeau, und Éric Bélanger. 2016. The British general election: Synthetic forecasts. Electoral Studies 41(Supplement C): 264–268.

    CrossRef  Google Scholar 

  • Linzer, Drew A. 2013. Dynamic Bayesian forecasting of presidential elections in the states. Journal of the American Statistical Association 108(501): 124–134.

    CrossRef  Google Scholar 

  • Martin, Andrew D., Kevin M. Quinn, Theodore W. Ruger, und Pauline T. Kim. 2004. Competing approaches to predicting supreme court decision making. Perspectives on Politics 2(4): 761–767.

    CrossRef  Google Scholar 

  • Mayer, William G. 2014. What, if anything, have we learned from presidential election forecasting? PS: Political Science & Politics 47(2): 329–331.

    Google Scholar 

  • Meirowitz, Adam, und Joshua A. Tucker. 2004. Learning from terrorism markets. Perspectives on Politics 2(2): 331–336.

    CrossRef  Google Scholar 

  • Munzert, Simon, Lukas Stötzer, Thomas Gschwend, Marcel Neunhoeffer, und Sebastian Sternberg. 2017. Zweitstimme.org. Ein strukturell-dynamisches Vorhersagemodell für Bundestagswahlen. Politische Vierteljahresschrift 58(3): 418–441.

    CrossRef  Google Scholar 

  • Murr, Andreas Erwin. 2011. Wisdom of crowds‘? A decentralised election forecasting model that uses citizens’ local expectations. Electoral Studies 30(4): 771–783.

    CrossRef  Google Scholar 

  • Norpoth, Helmut. 2016. Primary model predicts trump victor. PS: Political Science & Politics 49(4): 655–658.

    Google Scholar 

  • Norpoth, Helmut, und Thomas Gschwend. 2014. A near miss for the chancellor model. EUSA: EU Political Economy Bulletin 17:4–8.

    Google Scholar 

  • Nurmi, Hannu. 2002. Voting procedures under uncertainty. Berlin/Heidelberg: Springer.

    CrossRef  Google Scholar 

  • O’Brien, Sean P. 2010. Crisis early warning and decision support: Contemporary approaches and thoughts on future research. International Studies Review 12(1): 87–104.

    CrossRef  Google Scholar 

  • Peterson, Jack, Joseph Krug, Micah Zoltu, Austin K. Williams, und Stephanie Alexander. 2015. Augur: A decentralized oracle and prediction market platform. arXiv:1501.01042 [cs]. Zugegriffen am 05.03.2018.

    Google Scholar 

  • Sanders, David. 1996. Economic performance, management competence and the outcome of the next general election. Political Studies 44(2): 203–231.

    CrossRef  Google Scholar 

  • Schrodt, Philip A. 2013. Seven deadly sins of contemporary quantitative political analysis. Journal of Peace Research 51:287–300.

    CrossRef  Google Scholar 

  • Selb, Peter, und Simon Munzert. 2015. Forecasting the 2013 German bundestag election using many polls and historical election results. German Politics 25(1): 73–83.

    CrossRef  Google Scholar 

  • Silver, Nate. 2016. A user’s guide to FiveThirtyEight’s 2016 general election forecast. FiveThirtyEight. https://fivethirtyeight.com/features/a-users-guide-to-fivethirtyeights-2016-general-election-forecast/. Zugegriffen am 21.12.2017.

  • Sternberg, Sebastian. 2017. How to forecast constitutional court decisions? Legal context and political context in a machine learning framework. Working paper.

    Google Scholar 

  • Ward, Michael D., Brian D. Greenhill, und Kristin M. Bakke. 2010. The perils of policy by p-value: Predicting civil conflicts. Journal of Peace Research 47(4): 363–375.

    CrossRef  Google Scholar 

  • Wolfers, Justin, und Eric Zitzewitz. 2004. Prediction markets. Journal of Economic Perspectives 18(2): 107–126.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arndt Leininger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Leininger, A. (2018). Forecasting. In: Wagemann, C., Goerres, A., Siewert, M. (eds) Handbuch Methoden der Politikwissenschaft. Springer Reference Sozialwissenschaften. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-16937-4_36-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-16937-4_36-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer VS, Wiesbaden

  • Print ISBN: 978-3-658-16937-4

  • Online ISBN: 978-3-658-16937-4

  • eBook Packages: Springer Referenz Sozialwissenschaften und Recht

Chapter History

  1. Latest

    Forecasting
    Published:
    04 October 2018

    DOI: https://doi.org/10.1007/978-3-658-16937-4_36-2

  2. Original

    Forecasting
    Published:
    04 July 2018

    DOI: https://doi.org/10.1007/978-3-658-16937-4_36-1