Advertisement

Ionisationsvakuummeter

  • Karl Jousten
Living reference work entry
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

In Ionisationsvakuummetern werden die neutralen Gasteilchen ionisiert und der entstehende Ionenstrom gemessen. Die Ionisierung erfolgt entweder in einem Plasma oder durch einen Elektronenstrahl. Ionisationsvakuummeter messen sehr empfindlich die Gasdichte und sind daher als Messgerät für das Ultrahochvakuum geeignet.

Schlüsselwörter

Ionisationsvakuummeter Penning Magnetron Bayard-Alpert-Ionisationsvakummeter Extraktor Kombinationsvakuummeter 

Literatur

  1. 1.
    von Baeyer, O.: Phys. Z. 10, 168 (1909)Google Scholar
  2. 2.
    Buckley, O.E.: An ionization manometer. Proc. Natl. Acad. Sci. U. S. A. 2, 683 (1916)CrossRefGoogle Scholar
  3. 3.
    Dushman, S., Lafferty, J.M.: Scientific foundations of vacuum technique. 2. Aufl. Wiley, New York (1962)Google Scholar
  4. 4.
    Penning, F.M.: Ein neues Manometer für niedrige Gasdrücke, insbesondere zwischen 10−3 und 10−5 mm. Physica 4, 71 (1937) und Philips Tech. Rev. 2, 201 (1937)CrossRefGoogle Scholar
  5. 5.
    Penning, F.M.: Die Glimmentladung bei niedrigem Druck zwischen koaxialen Zylindern in einem axialen Magnetfeld. Physica 3, 873 (1936) und US Patent, 1939 verliehenCrossRefGoogle Scholar
  6. 6.
    Penning, F.M., Nienhuis, K.: Construction and application of a new design of the Philips vacuum gauge. Philips Tech. Rev. 11, 116 (1949)Google Scholar
  7. 7.
    Lotz, W.: Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions. Astrophys. J. Suppl. 14, 207–238 (1967)CrossRefGoogle Scholar
  8. 8.
    Tilford, C.R.: Sensitivity of hot cathode ionization gauges. J. Vac. Sci. Technol. A 3, 546–549 (1985)CrossRefGoogle Scholar
  9. 9.
    Edelmann, Chr., Engelmann, P.: Möglichkeiten der Messbereichserweiterung bei Glühkatoden-Ionisationsvakuummetern. Vak. Technol. 31, 2–10 (1982)Google Scholar
  10. 10.
    Kno, Z.H.: An approach to the non-linearity of an ionization vacuum gauge at the upper limit of the measured pressure. Vacuum 31(7), 303/08 (1981)Google Scholar
  11. 11.
    Wang, Y.-Z.: A fundamental theory of high pressure hot cathode ionization gauges. Vacuum 34, 775–778 (1984)CrossRefGoogle Scholar
  12. 12.
    Schulz, G.J., Phleps, A.V.: Ionization gauges for measuring pressures up to the millimeter range. Rev. Sci. Instrum. 28, 1051 (1957)CrossRefGoogle Scholar
  13. 13.
    Bayard, R.T., Alpert, D.: Extension of the low pressure range of the ionization gauge. Rev. Sci. Instrum. 21, 571 (1950)CrossRefGoogle Scholar
  14. 14.
    Arnold, P.C., Bills, D.G., Borenstein, M.D., Borichevsky, S.C.: Stable and reproducible Bayard-Alpert ionization gauge. J. Vac. Sci. Technol. A 12, 580–586 (1994)CrossRefGoogle Scholar
  15. 15.
    Schmidt, K., Bergner, U.: Stabilität von Hochvakuum-Meßröhren. Vak. Forsch. Prax. 3, 177–182 (1996)Google Scholar
  16. 16.
    Peacock, R.N., Peacock, N.T.: Sensitivity variation of Bayard–Alpert gauges with and without closed grids from 10–4 to 1 Pa. J. Vac. Sci. Technol. A 8, 3341 (1990)CrossRefGoogle Scholar
  17. 17.
    van Oostrom, A.: Vac. Symp. Trans. Comm. Vac. Technol. 1 (1961), Pergamon, New York, 443.Google Scholar
  18. 18.
    Repa, P.: The residual current of the modulated BA-gauge. Vacuum 36, 559–560 (1986)CrossRefGoogle Scholar
  19. 19.
    Chou, T.S., Tang, Z.Q.: Investigation on the low pressure limit of the Bayard-Alpert gauge. J. Vac. Sci. Technol. A 4, 2280–2283 (1986)CrossRefGoogle Scholar
  20. 20.
    Filipelli, A.R.: Residual currents in several commercial ultra high Bayard-Alpert gauges. J. Vac. Sci. Technol. A 5, 3234–3241 (1987)CrossRefGoogle Scholar
  21. 21.
    Berman, A.: Total pressure measurements in vacuum technology. Academic, New York (1985)Google Scholar
  22. 22.
    Grosse, G., et al.: Secondary electrons in ion gauges. J. Vac. Sci. Technol. A 5, 3242 (1987)CrossRefGoogle Scholar
  23. 23.
    Harten, U., et al.: Surface effects on the stability of hot cathode ionization gauges. Vacuum 38, 167–169 (1988)CrossRefGoogle Scholar
  24. 24.
    Redhead, P.A.: Electron stimulated desorption. Vacuum 12, 267 (1962)CrossRefGoogle Scholar
  25. 25.
    Redhead, P.A.: Modulated Bayard–Alpert gauge. Rev. Sci. Instrum. 31, 343 (1960)CrossRefGoogle Scholar
  26. 26.
    Hobson, J.P.: Measurements with a modulated Bayard–Alpert gauge in aluminosilicate glass at pressures below 10−12 Torr. J. Vac. Sci. Technol. A 81, 1 (1964)Google Scholar
  27. 27.
    Helmer, J.C., Hayward, W.D.: Ion gauge for vacuum pressure measurements below 1 × 10−10 Torr. Rev. Sci. Instrum. 37, 1652 (1966)CrossRefGoogle Scholar
  28. 28.
    Han, S.-W., et al.: Performance of the bent beam ionization gauge in ultrahigh vacuum measurements. Vacuum 38, 1079–1082 (1988)CrossRefGoogle Scholar
  29. 29.
    Watanabe, F.: Ion spectroscopy gauge: total pressure measurements down to 10–12 Pa with discrimination against electron-stimulated-desorption ions. J. Vac. Sci. Technol. A 10, 3333–3339 (1992)CrossRefGoogle Scholar
  30. 30.
    Craig, J.H., Hock, J.H.: Construction and performance characteristics of a low cost energy prefilter. J. Vac. Sci. Technol. 17, 1360–1363 (1980)CrossRefGoogle Scholar
  31. 31.
    Akimichi, H., et al.: Development of a new ionization gauge with Bessel box type energy analyser. Vacuum 46, 749–752 (1995)CrossRefGoogle Scholar
  32. 32.
    Katalog der ULVAC Cooperation, Japan, vom 4. September 2017. www.ulvac.co.jp/eng/
  33. 33.
    Lafferty, J.M.: Hot-cathode magnetron ionization gauge for the measurement of ultrahigh vacua. J. Appl. Phys. 32, 424 (1961)CrossRefGoogle Scholar
  34. 34.
    Schuemann, W.C.: Ionization vacuum gauge with photocurrent suppression. Rev. Sci. Instrum. 34, 700 (1963)CrossRefGoogle Scholar
  35. 35.
    Messer, G.: Long term stability of various reference gauges over a three years period. Proc. 8th Int. Vacuum Congr. Cannes 2, 191–194 (1980)Google Scholar
  36. 36.
    Lafferty, J.M.: Trans. Am. Vac. Soc. Vac. Symp. 7, 97 (1960)Google Scholar
  37. 37.
    Chen, J.Z., et al.: An axial-emission ultra-high vacuum gauge. J. Vac. Sci. Technol. 20, 88–91 (1982)CrossRefGoogle Scholar
  38. 38.
    Chen, J.Z., et al.: Proc. 9. Int. Vac. Congr., Madrid, S. 99.(1983)Google Scholar
  39. 39.
    Ohsako, N.: A new wide-range B–A gauge from UHV to 10−1 Torr. J. Vac. Sei. Technol. 20, 1153–1155 (1982)CrossRefGoogle Scholar
  40. 40.
    Watanabe, F.: Point collector ionization gauge with spherical grid for measuring pressures below, 10–11 Pa. J. Vac. Sci. Technol. A 5, 242–248 (1987)CrossRefGoogle Scholar
  41. 41.
    Gentsch, H.: Inertes Ionisationsvakuummeter mit extrahiertem Kollektor (EXKOLL). Vak. Technol. 36, 67–74 (1987)Google Scholar
  42. 42.
    Redhead, P.A.: Ultrahigh vacuum pressure measurements: limiting processes. J. Vac. Sci. Technol. A 5, 3215–3223 (1987)CrossRefGoogle Scholar
  43. 43.
    Madey, T.E.: Surface phenomena and their influence on ultrahigh vacuum gauges. J. Technol. A 5, 3249 (1987) (Summary abstract)Google Scholar
  44. 44.
    Oshima, C., Otuko, A.: Performance of an ionization gauge with a large-angle ion deflector. I. Total pressure measurement in extreme high vacuum. J. Vac, Sci. Technol. A 12, 3233 (1994)CrossRefGoogle Scholar
  45. 45.
    Morrison, D.: Lethal voltages from ion/gas discharge interactions. Le Vide 41, 297–304 (1986)Google Scholar
  46. 46.
    Knauer, W.: Mechanism of the Penning discharge at low pressures. J. Appl. Phys. 33, 2093 (1962)CrossRefGoogle Scholar
  47. 47.
    Knauer, W., et al.: Instability of plasma sheath rotation and associated microwave generation in a Penning discharge. Appl. Phys. Lett. 3(1), 11 (1963)CrossRefGoogle Scholar
  48. 48.
    Bohm, D., et al.: Theoretical considerations regarding minimum pressure for stable arc operations. Natl. Nucl. Energy Ser. 1 5, 77 ff. (1949) und 173 ff.Google Scholar
  49. 49.
    Redhead, P.A.: The townsend discharge in a coaxial diode with axial magnetic field. Can. J. Phys. 37, 255 (1959)CrossRefMATHGoogle Scholar
  50. 50.
    Hobson, J.P., Redhead, P.A.: Operation of an inverted meagnetron gauge in the pressure range 10−3 to 10−12 mm Hg. Can. J. Phys. 36, 271 (1958)CrossRefGoogle Scholar
  51. 51.
    Leck, J.H.: Sorption and desorption of gas in the cold-cathode ionization gauge. J. Sci. Instrum. 30, 271 (1953)CrossRefGoogle Scholar
  52. 52.
    Barnes, G., Gaines, J., Kees, J.: Relative sensitivity and pumping rate of the redhead magnetron gauge. Vacuum 12, 141 (1962)CrossRefGoogle Scholar
  53. 53.
    Rhodin, T.N., Rovner, L.H.: Gas-metal reactions in oxygen at low pressures. Trans. 7th Nat. Symp. Vac. Technol. 228 (1960)Google Scholar
  54. 54.
    Kornelsen, E.V.: A small ionic pump employing metal evaporation. Trans. 7th Nat. Symp. Vac. Technol. 29 (1960)Google Scholar
  55. 55.
    Li, D., Jousten, K.: Comparison of some metrological characteristics of hot and cold cathode ionization gauges. Vacuum 70, 531–541 (2003)CrossRefGoogle Scholar
  56. 56.
    Li, D., Jousten, K.: Comparison of the stability of hot and cold cathode ionization gauges. J. Vac. Sci. Technol. A 21, 937–946 (2003)CrossRefGoogle Scholar
  57. 57.
    Jousten, K.: Comparison of the sensitivities of ionization gauges to hydrogen and deuterium. Vacuum 46, 9–12 (1995)CrossRefGoogle Scholar
  58. 58.
    Jousten, K.: Temperature corrections for the calibration of vacuum gauges. Vacuum 49, 81–87 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  1. 1.Physikalisch-Technische Bundesanstalt (PTB)BerlinDeutschland

Personalised recommendations