Big Data im Gesundheitskontext

Living reference work entry
Part of the Springer Reference Sozialwissenschaften book series (SRS)

Zusammenfassung

Mit dem Begriff „Big Data“ wird im Gesundheitskontext auf ein breites Spektrum soziotechnischer Phänomene des Umgangs mit digitalen gesundheitsbezogenen Daten verwiesen. Auf Grundlage des Forschungsstands bietet dieser Beitrag einen strukturierenden Überblick über das Themenfeld. Dafür werden verschiedene Generierungs- und Verwertungskontexte sowie unterschiedliche Datenarten und kommunikationstechnologische Anwendungen dargestellt, anhand derer sich prototypische soziale Praktiken beschreiben lassen, sowie Rahmenbedingungen und Konsequenzen skizziert. Darauf aufbauend werden abschließend Ansatzpunkte für die Gesundheitskommunikationsforschung aufgezeigt.

Schlüsselwörter

Big Data Gesundheitskommunikation Digitale gesundheitsbezogene Daten Digitalisierung Strukturierungsheuristik 

Literatur

  1. Ancker, J. S., Witteman, H. O., Hafeez, B., Provencher, T., van de Graaf, M., & Wei, E. (2015). „You get reminded you’re a sick person“: Personal data tracking and patients with multiple chronic conditions. Journal of Medical Internet Research, 17(8), e202.  https://doi.org/10.2196/jmir.4209.CrossRefGoogle Scholar
  2. Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5), 662–679.  https://doi.org/10.1080/1369118X.2012.678878.CrossRefGoogle Scholar
  3. Bundesministerium für Gesundheit. (28. Dez 2015). Das E-Health-Gesetz. http://www.bmg.bund.de/themen/krankenversicherung/e-health-gesetz/e-health.html. Zugegriffen am 06.11.2017.
  4. Chen, Y.-L., Cheng, B.-C., Chen, H.-L., Lin, C.-I., Liao, G.-T., Hou, B.-Y., & Hsu, S.-C. (2012). A privacy-preserved analytical method for eHealth database with minimized information loss. Journal of Biomedicine and Biotechnology, 2012, 1–9.  https://doi.org/10.1155/2012/521267.CrossRefGoogle Scholar
  5. Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209.  https://doi.org/10.1007/s11036-013-0489-0.CrossRefGoogle Scholar
  6. Chowdhury, M. A., McIver, W., Jr., & Light, J. (2012). Data association in remote health monitoring systems. IEEE Communications Magazine, 50(6), 144–149.  https://doi.org/10.1109/MCOM.2012.6211499.
  7. Crawford, K., Miltner, K., & Gray, M. L. (2014). Critiquing big data: Politics, ethics, epistemology. International Journal of Communication, 8, 1663–1672.Google Scholar
  8. DeIuliis, D. (2014). Big data. In T. L. Thompson (Hrsg.), Encyclopedia of health communication (S. 103–104). Thousand Oaks: Sage.  https://doi.org/10.4135/9781483346427.n39.
  9. Eggleston, E. M., & Weitzman, E. R. (2014). Innovative uses of electronic health records and social media for public health surveillance. Current Diabetes Reports, 14(3), 468.  https://doi.org/10.1007/s11892-013-0468-7.CrossRefGoogle Scholar
  10. Eysenbach, G. (2009). Infodemiology and infoveillance: Framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the internet. Journal of Medical Internet Research, 11(1), e11.  https://doi.org/10.2196/jmir.1157.CrossRefGoogle Scholar
  11. Frizzo-Barker, J., Chow-White, P. A., Charters, A., & Ha, D. (2016). Genomic big data and privacy: Challenges and opportunities for precision medicine. Computer Supported Cooperative Work, 25(2–3), 115–136.  https://doi.org/10.1007/s10606-016-9248-7.CrossRefGoogle Scholar
  12. Frost, J. H., & Massagli, M. (2008). Social uses of personal health information within PatientsLikeMe, an online patient community: What can happen when patients have access to one another’s data. Journal of Medical Internet Research, 10(3), e15.  https://doi.org/10.2196/jmir.1053.CrossRefGoogle Scholar
  13. Fung, I. C.-H., Tse, Z. T. H., & Fu, K.-W. (2015). The use of social media in public health surveillance. Western Pacific Surveillance and Response, 6(2), 3–6.  https://doi.org/10.5365/wpsar.2015.6.1.019.CrossRefGoogle Scholar
  14. Gaitanou, P., Garoufallou, E., & Balatsoukas, P. (2014). The effectiveness of big data in health care: A systematic review. In S. Closs, R. Studer, E. Garoufallou & M.-A. Sicilia (Hrsg.), Metadata and semantics research (S. 141–153). Cham: Springer.  https://doi.org/10.1007/978-3-319-13674-5_14.
  15. Golberg, D., Leonard, R., McEnroe, S., & McDonald, J. (2015). Connecting the dots: Using „big data“ to build an efficient, integrated service line. Healthcare Financial Management: Journal of the Healthcare Financial Management Association, 69(8), 72–76.Google Scholar
  16. Grimm, M., Wolf, S., & Lampert, C. (2016). Big, Small, Or Many Data? Eine systematische Literaturschau zu digitalen Daten in der Gesundheitskommunikation. In A.-L. Camerini, R. Ludolph & F. Rothenfluh (Hrsg.), Gesundheitskommunikation im Spannungsfeld zwischen Theorie und Praxis (S. 323–339). Baden-Baden: Nomos.  https://doi.org/10.5771/9783845274256-322.CrossRefGoogle Scholar
  17. Hansen, M. M., Miron-Shatz, T., Lau, A. Y. S., & Paton, C. (2014). Big data in science and healthcare: A review of recent literature and perspectives. Yearbook of Medical Informatics, 9(1), 21–26.  https://doi.org/10.15265/IY-2014-0004.CrossRefGoogle Scholar
  18. Kim, H. K., Niederdeppe, J., Guillory, J., Graham, M., Olson, C., & Gay, G. (2014). Determinants of pregnant women’s online self-regulatory activities for appropriate gestational weight gain. Health Communication, 30(9), 922–932.  https://doi.org/10.1080/10410236.2014.905900.CrossRefGoogle Scholar
  19. Knapp, M. M. (2013). Big data. Journal of Electronic Resources in Medical Libraries, 10(4), 215–222.  https://doi.org/10.1080/15424065.2013.847713.CrossRefGoogle Scholar
  20. Kramer, A. D. I., Guillory, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the National Academy of Sciences of the United States of America, 111(24), 8788–8790.  https://doi.org/10.1073/pnas.1320040111.
  21. Kwak, J., Amrhein, M., Barkhoff, H., & Heiby, E. M. (2015). Daily self-monitoring of physical leisure activities and health practices, self-concept, and quality-of-life. The Sport Journal. http://thesportjournal.org/article/daily-self-monitoring-of-physical-leisure-activities-and-health-practices-self-concept-and-quality-of-life/. Zugegriffen am 06.11.2017.
  22. Lahmann, H. (2015). Gesellschaftliche Konfliktlinien im Kontext von Big Data am Beispiel von Smart Health und Smart Mobility. https://www.divsi.de/wp-content/uploads/2015/09/Themenpapier_Konfliktlinien-Big_Data.pdf. Zugegriffen am 06.11.2017.
  23. Lünendonk. (2013). Big Data bei Krankenkassen: Bewältigung der Datenmengen in einem veränderten Gesundheitswesen. http://luenendonk-shop.de/out/pictures/0/lue_trendpapier_krankenversicherungen_f060213_fl.pdf. Zugegriffen am 06.11.2017.
  24. Lupton, D. (2013). Quantifying the body: Monitoring and measuring health in the age of mHealth technologies. Critical Public Health, 23(4), 393–403.  https://doi.org/10.1080/09581596.2013.794931.CrossRefGoogle Scholar
  25. Lupton, D. (2014a). The commodification of patient opinion: The digital patient experience economy in the age of big data. Sociology of Health & Illness, 36(6), 856–869.  https://doi.org/10.1111/1467-9566.12109.CrossRefGoogle Scholar
  26. Lupton, D. (2014b). Self-tracking modes: Reflexive self-monitoring and data practices. Paper für den Workshop „Imminent citizenships: Personhood and identity politics in the informatic age“.  https://doi.org/10.2139/ssrn.2483549.
  27. Martin-Sanchez, F., & Verspoor, K. (2014). Big data in medicine is driving big changes. Yearbook of Medical Informatics, 9(1), 14–20. http://doi.org/10.15265/IY-2014-0020.Google Scholar
  28. Murdoch, T. B., & Detsky, A. S. (2013). The inevitable application of big data to health care. Journal of the American Medical Association, 309(13), 1351–1352.  https://doi.org/10.1001/jama.2013.393.
  29. Neff, G. (2013). Why big data won’t cure us. Big Data, 1(3), 117–123.  https://doi.org/10.1089/big.2013.0029.CrossRefGoogle Scholar
  30. Obenshain, M. K. (2004). Application of data mining techniques to healthcare data. Infection Control and Hospital Epidemiology, 25(8), 690–695.  https://doi.org/10.1086/502460.CrossRefGoogle Scholar
  31. Paton, C., Hansen, M. M., Fernandez-Luque, L., & Lau, A. Y. S. (2012). Self-tracking, social media and personal health records for patient empowered self-care. Yearbook of Medical Informatics, 7(1), 16–24.Google Scholar
  32. Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: Promise and potential. Health Information Science and Systems, 2, 3. https://doi.org/10.1186%2F2047-2501-2-3.Google Scholar
  33. Redmond, S. J., Lovell, N. H., Yang, G. Z., Horsch, A., Lukowicz, P., Murrugarra, L., & Marschollek, M. (2014). What does big data mean for wearable sensor systems? Yearbook of Medical Informatics, 9(1), 135–142.  https://doi.org/10.15265/IY-2014-0019.CrossRefGoogle Scholar
  34. Rothstein, M. A. (2015). Ethical issues in big data health research: Currents in contemporary bioethics. Journal of Law, Medicine and Ethics, 43(2), 425–429.  https://doi.org/10.1111/jlme.12258.CrossRefGoogle Scholar
  35. Shah, N. H. (2015). Using big data. In P. R. O. Payne & P. J. Embi (Hrsg.), Translational informatics: Realizing the promise of knowledge-driven healthcare (S. 119–128). London: Springer.Google Scholar
  36. Sheydin, A., & Vella, G. (2013). Bridging the semantic gap: An approach based on observations in medical research and evidence-based clinical practice. Information Design Journal, 20(1), 79–95. http://doi.org/10.1075/idj.20.1.08she.Google Scholar
  37. Shin, M. (2012). Secure remote health monitoring with unreliable mobile devices. Journal of Biomedicine and Biotechnology, 2012: 546021.  https://doi.org/10.1155/2012/546021.CrossRefGoogle Scholar
  38. Swan, M. (2009). Emerging patient-driven health care models: An examination of health social networks, consumer personalized medicine and quantified self-tracking. International Journal of Environmental Research and Public Health, 6(2), 492–525.  https://doi.org/10.3390/ijerph6020492.CrossRefGoogle Scholar
  39. Swan, M. (2012). Health 2050: The realization of personalized medicine through crowdsourcing, the quantified self, and the participatory biocitizen. Journal of Personalized Medicine, 2(3), 93–118.  https://doi.org/10.3390/jpm2030093.CrossRefGoogle Scholar
  40. Tamang, S., Kopec, D., McCofie, T., & Levy, K. (2006). Developing health surveillance networks: An adaptive approach. The Journal on Information Technology in Healthcare, 4(4), 210–221.Google Scholar
  41. Thorpe, J. H., & Gray, E. A. (2015). Big data and ambulatory care: Breaking down legal barriers to support effective use. Journal of Ambulatory Care Management, 38(1), 29–38.  https://doi.org/10.1097/JAC.0000000000000059.CrossRefGoogle Scholar
  42. Velasco, E., Agheneza, T., Denecke, K., Kirchner, G., & Eckmanns, T. (2014). Social media and internet-based data in global systems for public health surveillance: A systematic review. The Milbank Quarterly, 92(1), 7–33.  https://doi.org/10.1111/1468-0009.1203.CrossRefGoogle Scholar
  43. Yang, Y. T., & Silverman, R. D. (2014). Mobile health applications: The patchwork of legal and liability issues suggests strategies to improve oversight. Health Affairs, 33(2), 222–227.  https://doi.org/10.1377/hlthaff.2013.0958.CrossRefGoogle Scholar
  44. Zheng, W., Chib, A., Gao, P., & Wang, K. (2011). Factors influencing physicians’ intentions to share electronic medical records: An empirical investigation in China. Media Asia, 38(1), 14–21.  https://doi.org/10.1080/01296612.2011.11726887.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2018

Authors and Affiliations

  1. 1.Hans-Bredow-Institut für Medienforschung an der Universität HamburgHamburgDeutschland
  2. 2.Hans-Bredow-InstitutHamburgDeutschland
  3. 3.Universitätsklinikum Hamburg-EppendorfHamburgDeutschland

Personalised recommendations