Advertisement

Neurobiologische Grundlagen der Wirkung von Psychedelika

  • Franz X. Vollenweider
  • Katrin H. Preller
Living reference work entry
Part of the Springer Reference Psychologie book series (SRP)

Zusammenfassung

Dieses Kapitel beschäftigt sich mit den neuropharmakologischen und neurobiologischen Wirkungsweisen von serotonergen Halluzinogenen (Ergolide und Indolalkylamine). Die ersten vier Abschnitte des Kapitels beleuchten ihre Wirkungsweisen auf Rezeptorebene. So zeigt sich, dass die Aktivierung der Serotonin 2A Rezeptoren einen notwendigen jedoch nicht hinreichenden Mechanismus in der Generierung der subjektiven psychedelischen Erfahrungen und objektiv erfassten kognitiven Veränderungen darstellt. Des Weiteren wird die Bedeutung des Glutamat- und Dopaminsystems diskutiert. Die weiteren Abschnitte untersuchen die spezifischen neurobiologischen Grundlagen von Psychedelika-induzierten Veränderungen der visuellen Wahrnehmung, Emotionalität, sozialen Kognition und Selbstwahrnehmung, die mit Hilfe von bildgebenden und elektrophysiologischen Verfahren untersucht wurden. So scheint beispielsweise ein Netzwerk aus medio-, latero-, und orbitofrontalen, sowie cingulären und subkortikalen Regionen an den erlebten Lockerungen der Ich-Grenzen beteiligt zu sein. Abschliessend werden zwei Modelle zur allgemeinen Wirkung von Psychedelika vorgestellt, die einerseits eine veränderte Filterfunktion des Thalamus, andererseits eine verringerte Kopplung von kortikalen Netzwerten als den psychedelischen Erfahrungen unterliegender Mechanismus postulieren.

Schlüsselwörter

Serotonin 5-HT2A Rezeptor Dopamin Glutamat Visuelle Wahrnehmung Soziale Kognition Neuropharmakolgie 

Literatur

  1. Aghajanian, G. K., & Marek, G. J. (1999). Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Research, 825(1–2), 161–171.CrossRefPubMedGoogle Scholar
  2. Beique, J. C., Imad, M., Mladenovic, L., Gingrich, J. A., & Andrade, R. (2007). Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104(23), 9870–9875.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benneyworth, M. A., Smith, R. L., & Sanders-Bush, E. (2008). Chronic phenethylamine hallucinogen treatment alters behavioral sensitivity to a metabotropic glutamate 2/3 receptor agonist. Neuropsychopharmacology, 33(9), 2206–2216.CrossRefPubMedGoogle Scholar
  4. Blaazer, A. R., Smid, P., & Kruse, C. G. (2008). Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT(2A) receptors. ChemMedChem, 3(9), 1299–1309.CrossRefPubMedGoogle Scholar
  5. Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., et al. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences of the United States of America, 109(6), 2138–2143.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carhart-Harris, R. L., Leech, R., Erritzoe, D., Williams, T. M., Stone, J. M., Evans, J., et al. (2013). Functional connectivity measures after psilocybin inform a novel hypothesis of early psychosis. Schizophrenia Bulletin, 39(6), 1343–1351.CrossRefPubMedGoogle Scholar
  7. Carhart-Harris, R. L., Leech, R., Hellyer, P. J., Shanahan, M., Feilding, A., Tagliazucchi, E., et al. (2014). The entropic brain: A theory of conscious states informed by neuroimaging research with psychedelic drugs. Frontiers in Human Neuroscience, 8, 20.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carhart-Harris, R. L., Bolstridge, M., Rucker, J., Day, C. M., Erritzoe, D., Kaelen, M., et al. (2016a). Psilocybin with psychological support for treatment-resistant depression: An open-label feasibility study. The Lancet Psychiatry, 3, 619–627.CrossRefPubMedGoogle Scholar
  9. Carhart-Harris, R. L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W., Murphy, K., et al. (2016b). Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proceedings of the National Academy of Sciences of the United States of America, 113(17), 4853–4858.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carter, O. L., Hasler, F., Pettigrew, J. D., Wallis, G. M., Liu, G. B., & Vollenweider, F. X. (2007). Psilocybin links binocular rivalry switch rate to attention and subjective arousal levels in humans. Psychopharmacology, 195(3), 415–424.CrossRefPubMedGoogle Scholar
  11. Dolder, P. C., Schmid, Y., Muller, F., Borgwardt, S., & Liechti, M. E. (2016). LSD acutely impairs fear recognition and enhances emotional empathy and sociality. Neuropsychopharmacology, 41, 2638–2646.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fribourg, M., Moreno, J. L., Holloway, T., Provasi, D., Baki, L., Mahajan, R., et al. (2011). Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell, 147(5), 1011–1023.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gasser, P., Holstein, D., Michel, Y., Doblin, R., Yazar-Klosinski, B., Passie, T., et al. (2014). Safety and efficacy of lysergic acid diethylamide-assisted psychotherapy for anxiety associated with life-threatening diseases. Journal of Nervous and Mental Disease, 202(7), 513–520.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gewirtz, J. C., & Marek, G. J. (2000). Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. Neuropsychopharmacology, 23(5), 569–576.CrossRefPubMedGoogle Scholar
  15. Geyer, M. A., & Vollenweider, F. X. (2008). Serotonin research: Contributions to understanding psychoses. Trends in Pharmacological Sciences, 29(9), 445–453.CrossRefPubMedGoogle Scholar
  16. Geyer, M. A., Krebs-Thomson, K., Braff, D. L., & Swerdlow, N. R. (2001). Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: A decade in review. Psychopharmacology (Berlin), 156(2–3), 117–154.CrossRefGoogle Scholar
  17. Glennon, R. A., Titeler, M., & McKenney, J. D. (1984). Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sciences, 35, 2505–2511.CrossRefPubMedGoogle Scholar
  18. Gonzalez-Maeso, J., Weisstaub, N. V., Zhou, M., Chan, P., Ivic, L., Ang, R., et al. (2007). Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron, 53(3), 439–452.CrossRefPubMedGoogle Scholar
  19. González-Maeso, J., Ang, R. L., Yuen, T., Chan, P., Weisstaub, N. V., López-Giménez, J. F., Zhou, M., Okawa. Y., Callado, L. F., Milligan, G., Gingrich, J. A., Filizola, M., Meana, J. J., & Sealfon, S. C. (2008). Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature, 452(7183), 93–97.Google Scholar
  20. Gouzoulis-Mayfrank, E., Schreckenberger, M., Sabri, O., Arning, C., Thelen, B., Spitzer, M., et al. (1999). Neurometabolic effects of psilocybin, 3,4-methylenedioxyethylamphetamine (MDE) and d-methamphetamine in healthy volunteers. A double-blind, placebo-controlled PET study with [18 F]FDG. Neuropsychopharmacology, 20(6), 565–581.CrossRefPubMedGoogle Scholar
  21. Halberstadt, A. L., Koedood, L., Powell, S. B., & Geyer, M. A. (2011). Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. Journal of Psychopharmacology, 25(11), 1548–1561.CrossRefPubMedGoogle Scholar
  22. Hermle, L., Fünfgeld, M., Oepen, G., Botsch, H., Borchard, D., Gouzoulis, E., et al. (1993). Mescaline-induced psychopathological, neuropsychological, and neurometabolic effects in normal subjects: Experimental psychosis as a tool for psychiatric research. Biological Psychiatry, 32, 976–991.CrossRefGoogle Scholar
  23. Hofmann, A. (1968). Psychotomimetic agents. In A. Burger (Hrsg.), Chemical constitution and pharmacodynamic actions (S. 169–235). New York: M.Dekker.Google Scholar
  24. Kaelen, M., Roseman, L., Kahan, J., Santos-Ribeiro, A., Orban, C., Lorenz, R., et al. (2016). LSD modulates music-induced imagery via changes in parahippocampal connectivity. European Neuropsychopharmacology, 26(7), 1099–1109.CrossRefPubMedGoogle Scholar
  25. Kometer, M., Cahn, B. R., Andel, D., Carter, O. L., & Vollenweider, F. X. (2011). The 5-HT2A/1A agonist psilocybin disrupts modal object completion associated with visual hallucinations. Biological Psychiatry, 69(5), 399–406.CrossRefPubMedGoogle Scholar
  26. Kometer, M., Schmidt, A., Bachmann, R., Studerus, E., Seifritz, E., & Vollenweider, F. X. (2012). Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biological Psychiatry, 72(11), 898–906.CrossRefPubMedGoogle Scholar
  27. Kometer, M., Schmidt, A., Jancke, L., & Vollenweider, F. X. (2013). Activation of serotonin 2A receptors underlies the psilocybin-induced effects on alpha oscillations, N170 visual-evoked potentials, and visual hallucinations. Journal of Neuroscience, 33(25), 10544–10551.CrossRefPubMedGoogle Scholar
  28. Kometer, M., Pokorny, T., Seifritz, E., & Volleinweider, F. X. (2015). Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations. Psychopharmacology, 232(19), 3663–3676.CrossRefPubMedGoogle Scholar
  29. Kraehenmann, R., Preller, K. H., Scheidegger, M., Pokorny, T., Bosch, O. G., Seifritz, E., et al. (2014). Psilocybin-induced decrease in amygdala reactivity correlates with enhanced positive mood in healthy volunteers. Biological Psychiatry, 78, 572–581.CrossRefPubMedGoogle Scholar
  30. Kraehenmann, R., Schmidt, A., Friston, K., Preller, K. H., Seifritz, E., & Vollenweider, F. X. (2016). The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity. NeuroImage: Clinical, 11, 53–60.CrossRefGoogle Scholar
  31. Krebs-Thomson, K., & Geyer, M. A. (1998). Evidence for a functional interaction between 5-HTA1 and 5-HT2 receptors in rats. Psychopharmacology, 697, 1–6.Google Scholar
  32. Lambe, E. K., & Aghajanian, G. K. (2006). Hallucinogen-induced UP states in the brain slice of rat prefrontal cortex: Role of glutamate spillover and NR2B-NMDA receptors. Neuropsychopharmacology, 31(8), 1682–1689.CrossRefPubMedGoogle Scholar
  33. Lambe, E. K., Goldman-Rakic, P. S., & Aghajanian, G. K. (2000). Serotonin induces EPSCs preferentially in layer V pyramidal neurons of the frontal cortex in the rat. Cerebral Cortex, 10(10), 974–980.CrossRefPubMedGoogle Scholar
  34. Lebedev, A. V., Lovden, M., Rosenthal, G., Feilding, A., Nutt, D. J., & Carhart-Harris, R. L. (2015). Finding the self by losing the self: Neural correlates of ego-dissolution under psilocybin. Human Brain Mapping, 36(8), 3137–3153.CrossRefPubMedGoogle Scholar
  35. Lebedev, A. V., Kaelen, M., Lovden, M., Nilsson, J., Feilding, A., Nutt, D. J., et al. (2016). LSD-induced entropic brain activity predicts subsequent personality change. Human Brain Mapping, 37, 3203–3213.CrossRefPubMedGoogle Scholar
  36. Leuner, H. (1962). Die experimentelle Psychose. Berlin/Göttingen/Heidelberg: Springer.CrossRefGoogle Scholar
  37. Marek, G. J., & Aghajanian, G. K. (1996). LSD and the phenethylamine hallucinogen DOI are potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. The Journal of Pharmacology and Experimental Therapeutics, 278(3), 1373–1382.PubMedGoogle Scholar
  38. Marek, G. J., Wright, R. A., Schoepp, D. D., Monn, J. A., & Aghajanian, G. K. (2000). Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. Journal of Pharmacology and Experimental Therapeutics, 292(1), 76–87.PubMedGoogle Scholar
  39. Marek, G. J., Wright, R. A., Gewirtz, J. C., & Schoepp, D. D. (2001). A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience, 105(2), 379–392.CrossRefPubMedGoogle Scholar
  40. Molinaro, G., Traficante, A., Riozzi, B., Di Menna, L., Curto, M., Pallottino, S., et al. (2009). Activation of mGlu2/3 metabotropic glutamate receptors negatively regulates the stimulation of inositol phospholipid hydrolysis mediated by 5-hydroxytryptamine2A serotonin receptors in the frontal cortex of living mice. Molecular Pharmacology, 76(2), 379–387.CrossRefPubMedGoogle Scholar
  41. Moreno, J. L., Muguruza, C., Umali, A., Mortillo, S., Holloway, T., Pilar-Cuellar, F., et al. (2012). Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5-HT2A.mGlu2) receptor heteromerization and its psychoactive behavioral function. Journal of Biological Chemistry, 287(53), 44301–44319.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Marona-Lewicka, D., Thisted, R. A., & Nichols, D. E. (2005). Distinct temporal phases in the behavioral pharmacology of LSD: Dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology (Berlin), 180(3), 427–435.Google Scholar
  43. Muthukumaraswamy, S. D., Carhart-Harris, R. L., Moran, R. J., Brookes, M. J., Williams, T. M., Errtizoe, D., et al. (2013). Broadband cortical desynchronization underlies the human psychedelic state. Journal of Neuroscience, 33(38), 15171–15183.CrossRefPubMedGoogle Scholar
  44. Nagamine, M., Yoshino, A., Miyazaki, M., Takahashi, Y., & Nomura, S. (2008). Effects of selective 5-HT1A agonist tandospirone on the rate and rhythmicity of binocular rivalry. Psychopharmacology, 198(2), 279–286.CrossRefPubMedGoogle Scholar
  45. Nichols, D. E. (2016). Psychedelics. Pharmacological Reviews, 68(2), 264–355.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Patil, S. T., Zhang, L., Martenyi, F., Lowe, S. L., Jackson, K. A., Andreev, B. V., et al. (2007). Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: A randomized Phase 2 clinical trial. Nature Medicine, 13(9), 1102–1107.CrossRefPubMedGoogle Scholar
  47. Pokorny, T., Preller, K. H., Kometer, M., Dziobek, I., & Vollenweider, F. X. (2017). Effect of the preferential 5-HT2A/1A agonist psilocybin on empathy and moral decision-making. (in Begutachtung).Google Scholar
  48. Pokorny, T., Preller, K. H., Kraehenmann, R., & Vollenweider, F. X. (2016). Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience. European Neuropsychopharmacology, 26(4), 756–766.CrossRefPubMedGoogle Scholar
  49. Preller, K. H., Schilbach, L., Pokorny, T., Flemming, J., Kraehenmann, R., Stämpfli, P., Liechti, M. E., Seifritz, E., & Vollenweider, F. X. (2017). The role of the serotonin 2A receptor system in self and other initiated social interaction in LSD-induced states. (in Begutachtung).Google Scholar
  50. Preller, K. H., Pokorny, T., Hock, A., Kraehenmann, R., Stampfli, P., Seifritz, E., et al. (2016). Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 5119–5124.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Preller, K. H., Herdener, M., Pokorny, T., Planzer, A., Kraehenmann, R., Stämpfli, P., Liechti, M. E., Seifritz, E., & Vollenweider, F. X. (2017). The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Current Biology, 27(3), 451–457.Google Scholar
  52. Quednow, B. B., Kometer, M., Geyer, M. A., & Vollenweider, F. X. (2012). Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology, 37(3), 630–640.CrossRefPubMedGoogle Scholar
  53. Rasmussen, K., & Aghajanian, G. K. (1988). Potency of antipsychotics in reversing the effects of a hallucinogenic drug on locus coeruleus neurons correlates with 5-HT2 binding affinity. Neuropsychopharmacology, 1(2), 101–107.CrossRefPubMedGoogle Scholar
  54. Riba, J., Romero, S., Grasa, E., Mena, E., Carrio, I., & Barbanoj, M. J. (2006). Increased frontal and paralimbic activation following ayahuasca, the pan-amazonian inebriant. Psychopharmacology, 186, 93–98.CrossRefPubMedGoogle Scholar
  55. Roseman, L., Sereno, M. I., Leech, R., Kaelen, M., Orban, C., McGonigle, J., et al. (2016). LSD alters eyes-closed functional connectivity within the early visual cortex in a retinotopic fashion. Human Brain Mapping, 37, 3031–3040.CrossRefPubMedGoogle Scholar
  56. Sanders-Bush, E., Burries, K. D., & Knoth, K. (1988). Lysergic acid diethylamide and 2,5-dimethoxy-4-methylamphetamine are partial agonists at serotonin receptors linked to phosphoinositide hydrolysis. The Journal of Pharmacology and Experimental Therapeutics, 246, 924–928.PubMedGoogle Scholar
  57. Schmid, Y., Enzler, F., Gasser, P., Grouzmann, E., Preller, K. H., Vollenweider, F. X., et al. (2015). Acute effects of lysergic acid diethylamide in healthy subjects. Biological Psychiatry, 78(8), 544–553.CrossRefPubMedGoogle Scholar
  58. Schmidt, A., Kometer, M., Bachmann, R., Seifritz, E., & Vollenweider, F. X. (2013). The NMDA antagonist ketamine and the 5-HT agonist psilocybin produce dissociable effects on structural encoding of emotional face expressions. Psychopharmacology, 225(1), 227–239.CrossRefPubMedGoogle Scholar
  59. Studerus, E., Kometer, M., Hasler, F., & Vollenweider, F. X. (2011). Acute, subacute and long-term subjective effects of psilocybin in healthy humans: A pooled analysis of experimental studies. Journal of Psychopharmacology, 25(11), 1434–1452.CrossRefPubMedGoogle Scholar
  60. Studerus, E., Gamma, A., Kometer, M., & Vollenweider, F. X. (2012). Prediction of psilocybin response in healthy volunteers. PLoS One, 7(2), e30800.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Swerdlow, N. R., Braff, D. L., & Geyer, M. A. (2000). Animal models of deficient sensorimotor gating: What we know, what we think we know, and what we hope to know soon. Behavioural Pharmacology, 11(3–4), 185–204.CrossRefPubMedGoogle Scholar
  62. Tagliazucchi, E., Carhart-Harris, R., Leech, R., Nutt, D., & Chialvo, D. R. (2014). Enhanced repertoire of brain dynamical states during the psychedelic experience. Human Brain Mapping, 35(11), 5442–5456.CrossRefPubMedGoogle Scholar
  63. Vollenweider, F. X., Vontobel, P., Hell, D., & Leenders, K. L. (1999). 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man – a PET study with [11C]raclopride. Neuropsychopharmacology, 20(5), 424–433.Google Scholar
  64. Vollenweider, F. X. (2001). Brain mechanisms of hallucinogens and entactogens. Dialogues in Clinical Neuroscience, 3(4), 265–279.Google Scholar
  65. Vollenweider, F. X., & Geyer, M. A. (2001). A systems model of altered consciousness: Integrating natural and drug-induced psychoses. Brain Research Bulletin, 56(5), 495–507.CrossRefPubMedGoogle Scholar
  66. Vollenweider, F. X., & Kometer, M. (2010). The neurobiology of psychedelic drugs: Implications for the treatment of mood disorders. Nature Review Neuroscience, 11(9), 642–651.CrossRefGoogle Scholar
  67. Vollenweider, F. X., Leenders, K. L., Scharfetter, C., Maguire, P., Stadelmann, O., & Angst, J. (1997). Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology, 16(5), 357–372.CrossRefPubMedGoogle Scholar
  68. Vollenweider, F. X., Vollenweider-Scherpenhuyzen, M. F. I., Babler, A., Vogel, H., & Hell, D. (1998). Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. NeuroReport, 9(17), 3897–3902.CrossRefPubMedGoogle Scholar
  69. Vollenweider, F. X., Hell, D., Robbins, T., & Geyer, M. A. (2006). Cognitive effects of psilocybin, the role of 5HT(1) and 5HT(2) receptors in cognition. Journal of Pharmacological Sciences, 101, 22–22.Google Scholar
  70. Vollenweider, F. X., Csomor, P. A., Knappe, B., Geyer, M. A., & Quednow, B. B. (2007). The effects of the preferential 5-HT2A agonist psilocybin on prepulse inhibition of startle in healthy human volunteers depend on interstimulus interval. Neuropsychopharmacology, 32(9), 1876–1887.CrossRefPubMedGoogle Scholar
  71. Weinstein, H. (2005). Hallucinogen actions on 5-HT receptors reveal distinct mechanisms of activation and signaling by G protein-coupled receptors. The AAPS Journal, 7(4), E871–E884.CrossRefGoogle Scholar
  72. Wischhof, L., & Koch, M. (2012). Pre-treatment with the mGlu2/3 receptor agonist LY379268 attenuates DOI-induced impulsive responding and regional c-Fos protein expression. Psychopharmacology, 219(2), 387–400.CrossRefPubMedGoogle Scholar
  73. Wischhof, L., Hollensteiner, K. J., & Koch, M. (2011). Impulsive behaviour in rats induced by intracortical DOI infusions is antagonized by co-administration of an mGlu2/3 receptor agonist. Behavioural Pharmacology, 22(8), 805–813.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2016

Authors and Affiliations

  1. 1.Department of Psychiatry, Psychotherapy and Psychosomatics, Zentrum für Psychiatrische Forschung, Heffter Research Center ZürichPsychiatric University Hospital ZürichZürichSchweiz

Personalised recommendations