Zusammenfassung
Mitochondrien sind die zentralen Organellen der Zelle für die Energiegewinnung. Hier befindet sich die Endstrecke der Verbrennung von Eiweiß, Zucker und Fett. Dazu wird Sauerstoff verbraucht, CO2 und Wasser gebildet. Unter Ausnutzung von 3 Protonengradienten in der Atmungskette entstehen energiereiche Phosphate (Adenosintriphosphat, ATP) über eine turbinenartig funktionierende ATP-Synthase („Lebensmotor“). Zusätzlich fällt Zellwärme an. Jede Zelle enthält abhängig von der Gewebsart wenige bis tausende Mitochondrien. Es ist bemerkenswert, dass dieses lebenswichtige Zelloxidationssystem störanfällig ist. So werden in der inneren mitochondrialen Membran freie Radikale gebildet, die nur teilweise durch das Antioxidanziensystem aufgefangen werden können. Die Imbalance zwischen Radikalproduktion und antioxidativem Schutz wird als oxidativer Stress bezeichnet.
Similar content being viewed by others
Literatur
Andresen BS, Olpin S, Poorthuis BJ et al (1999) Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency. Am J Hum Genet 64:479–494
Andresen BS, Dobrowolski SF, O'Reilly L et al (2001) Medium-chain acyl-CoA dehydrogenase (MCAD) mutations identified by MS/MS-based prospective screening of newborns differ from those observed in patients with clinical symptoms: identification and characterization of a new, prevalent mutation that results in mild MCAD deficiency. Am J Hum Genet 68:1408–1418
Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften e.V. (AWMF) (2010) Diagnostik und Therapieansatze bei Mitochondriopathien im Kindes- und Jugendalter. AWMF-Leitlinien-Register Nr. 027/016, Entwicklungsstufe 2. AWMF, Düsseldorf. http://www.awmf.org/leitlinien/detail/ll/027-016.html. Zugegriffen am 02.02.2013
Bonnet D, Martin D, De Pascale L et al (1999) Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 100:2248–2253
Clayton PT, Eaton S, Aynsley-Green A et al (2001) Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest 108:457–465
Copeland WC (2012) Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol 47:64–74
Corr PB, Creer MH, Yamada KA et al (1989) Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest 83:927–936
Dang CV (2012) Links between metabolism and cancer. Genes Dev 26:877–890
den Boer ME, Wanders RJ, Morris AA et al (2002) Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: clinical presentation and follow-up of 50 patients. Pediatrics 109:99–104
DiMauro S (2011) A history of mitochondrial diseases. J Inherit Metab Dis 34:261–276
DiMauro S, Rustin P (2009) A critical approach to the therapy of mitochondrial respiratory chain and oxidative phosphorylation diseases. Biochim Biophys Acta 1792:1159–1167
Frederiksen AL et al (2006) Tissue specific distribution of the 3243A → G mtDNA mutation. J Med Genet 43:671–677
Gillingham MB, Weleber RG, Neuringer M et al (2005) Effect of optimal dietary therapy upon visual function in children with long-chain 3-hydroxyacyl CoA dehydrogenase and trifunctional protein deficiency. Mol Genet Metab 86:124–133
Graff C, Clayton DA, Larsson NG (1999) Mitochondrial medicine-recent advances. J Intern Med 246:11–23
Haack TB, Haberberger B, Frisch EM et al (2012) Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing. J Med Genet 49:277–283
Hempel M, Haack TB, Prokisch H (2011) Next generation sequencing. Monatsschr Kinderheilk 159:827–833
Hoffmann L, Haussmann U, Mueller M et al (2011) VLCAD enzyme activity determinations in newborns identified by screening: a valuable tool for risk assessment. J Inherit Metab Dis 35(2):269–277
Klepper J, Leiendecker B, Bredahl R et al (2002) Introduction of a ketogenic diet in young infants. J Inherit Metab Dis 25:449–460
Koga Y, Akita Y, Nishioka J et al (2005) L-arginine improves the symptoms of strokelike episodes in MELAS. Neurology 64:710–712
Koopman WJH, Willems PHGM, Smeitink JAM (2012) Monogenic mitochondrial disorders. N Engl J Med 366:1132–1141
Luft R (1995) The development of mitochondrial medicine. Biochim Biophys Acta 1271:1–6
Mayr JA, Freisinger P, Schlachter K et al (2011) Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway. Am J Hum Genet 89:806–812
Olsen RK, Olpin SE, Andresen BS et al (2007) ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain 130:2045–2054
Primassin S, Ter Veld F, Mayatepek E et al (2008) Carnitine supplementation induces acylcarnitine production in tissues of very long-chain acyl-CoA dehydrogenase-deficient mice, without replenishing low free carnitine. Pediatr Res 63:632–637
Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. Annu Rev Physiol 64:477–502
Rosenberg EH, Almeida LS, Kleefstra T et al (2004) High prevalence of SLC6A8 deficiency in X-linked mental retardation. Am J Hum Genet 75:97–105
Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF (2004) The epidemiology of mitochondrial disorders – past, present and future. Biochim Biophys Acta 1659:115–120
Schulze A (2004) Angeborene Störungen des Kreatinstoffwechsels (Kreatinmangelsyndrome). In: Hoffmann G, Grau AJ (Hrsg) Stoffwechselerkrankungen in der Neurologie. Thieme, Stuttgart, S 102–128
Schulze A, Hoffmann GF, Bachert P et al (2006) Successful pre-symptomatic diagnosis and treatment from birth in GAMT deficiency. Neurology 67:719–721
Skladal D, Halliday J, Thorburn DR (2003) Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126:1905–1912
Sperl W, Prokisch H, Karall D, Mayr JA, Freisinger P (2011) Mitochondriopathien, ein Update. Monatsschr Kinderheilk 9:848–854
Spiekerkoetter U et al (2003) Cardiomyopathy and pericardial effusion in infancy point to a fatty acid β-oxidation defect after exclusion of an underlying infection. Pediatr Cardiol 24:295–297
Spiekerkoetter U, Khuchua Z, Yue Z et al (2004) General mitochondrial trifunctional protein (TFP) deficiency as a result of either alpha- or beta-subunit mutations exhibits similar phenotypes because mutations in either subunit alter TFP complex expression and subunit turnover. Pediatr Res 55:190–196
Spiekerkoetter U, Lindner M, Santer R et al (2009) Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis 32:498–505
Spiekerkoetter U, Haussmann U, Mueller M et al (2010) Tandem mass spectrometry screening for very long-chain acyl-CoA dehydrogenase deficiency: the value of second-tier enzyme testing. J Pediatr 157:668–673
Stickler DE, Valenstein E, Neiberger RE et al (2006) Peripheral neuropathy in genetic mitochondrial diseases. Pediatr Neurol 34:127–131
Taroni F, Verderio E, Dworzak F et al (1993) Identification of a common mutation in the carnitine palmitoyltransferase II gene in familial recurrent myoglobinuria patients. Nat Genet 4:314–320
Tyni T, Kivela T, Lappi M et al (1998) Ophthalmologic findings in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency caused by the G1528C mutation: a new type of hereditary metabolic chorioretinopathy. Ophthalmology 105:810–824
van de Kamp JM, Mancini GMS, Pouwels PJW et al (2011) Clinical features and X-inactivation in females heterozygous for creatine transporter defect. Clin Genet 79:264–272
Van Hove JL, Grunewald S, Jaeken J et al (2003) D, L-3-hydroxybutyrate treatment of multiple acyl-CoA dehydrogenase deficiency (MADD). Lancet 361:1433–1435
van Maldegem BT, Duran M, Wanders RJ et al (2006) Clinical, biochemical, and genetic heterogeneity in short-chain acyl-coenzyme A dehydrogenase deficiency. JAMA 296:943–952
Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol Mech Dis 5:297–348
Wanders RJ, Ruiter JP, Ijlst L et al (2010) The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results. J Inherit Metab Dis 33(5):479–494
Wenz T, Williams SL, Bacman SR et al (2010) Emerging therapeutic approaches to mitochondrial diseases. Dev Disabil Res Rev 16:219–229
Wilcken B (2010) Fatty acid oxidation disorders: outcome and long-term prognosis. J Inherit Metab Dis 33:501–506
Wilcken B, Leung KC, Hammond J et al (1993) Pregnancy and fetal long-chain 3-hydroxyacyl coenzyme A dehydrogenase deficiency. Lancet 341:407–408
Wilcken B, Haas M, Joy P et al (2007) Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in Australia: a cohort study. Lancet 369:37–42
Wortmann SB, Rodenburg RJ, Jonckheere A et al (2009) Biochemical and genetic analysis of 3-methylglutaconic aciduria type IV: a diagnostic strategy. Brain 132:136–146
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this entry
Cite this entry
Sperl, W., Freisinger, P. (2015). Mitochondriopathien. In: Hoffmann, G., Lentze, M., Spranger, J., Zepp, F. (eds) Pädiatrie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54671-6_76-1
Download citation
DOI: https://doi.org/10.1007/978-3-642-54671-6_76-1
Received:
Accepted:
Published:
Publisher Name: Springer, Berlin, Heidelberg
Online ISBN: 978-3-642-54671-6
eBook Packages: Springer Referenz Medizin
Publish with us
Chapter history
-
Latest
Mitochondriopathien- Published:
- 02 May 2019
DOI: https://doi.org/10.1007/978-3-642-54671-6_76-2
-
Original
Mitochondriopathien- Published:
- 24 July 2015
DOI: https://doi.org/10.1007/978-3-642-54671-6_76-1