Sampling in Forest Inventories

Reference work entry

Abstract

In sampling, a part of a population is selected and used to obtain estimates of characteristics of that population. The current chapter gives an overview on sampling methods applied in the scope of forest inventories, describes their general approaches and estimation procedures, and discusses advantages and disadvantages of the individual designs. Fixed area plots and point sampling for the selection of trees on sampling units are presented. Alternative designs for the estimation of change by sampling on successive occasions are introduced. The final section gives an overview of sampling and non-sampling errors occurring in forests surveys.

Keywords

Bias Errors Estimation procedure Fixed-area plot Forest edge Forest inventory Point sampling Sampling Sampling designs Sampling on successive occasions Selection 

References

  1. Agresti A (1992) A survey of exact inference for contingency tables. Stat Sci 7:131–177CrossRefGoogle Scholar
  2. Alder D, Synnott TJ (1992) In: Institute OF (ed) Permanent sample plot techniques for mixed tropical forests, Tropical forestry papers. Oxford Forestry Institute, Oxford, p 124Google Scholar
  3. Baker PJ, Wilson JS (2000) A quantitative technique for the identification of canopy stratification in tropical and temperate forests. For Ecol Manage 127:77–86CrossRefGoogle Scholar
  4. Banyard SG (1987) Point sampling using constant tallies is biased: a tropical rainforest case study. Commonw For Rev 66:161–163Google Scholar
  5. Barabesi L, Franceschi S (2011) Sampling properties of spatial total estimators under tessellation stratified designs. Environmetrics 22:271–276CrossRefGoogle Scholar
  6. Barnett DT, Stohlgren TJ (2003) A nested-intensity design for surveying plant diversity. Biodivers Conserv 12:255–278CrossRefGoogle Scholar
  7. Bechtold WA, Patterson PL (2005) The enhanced forest inventory and analysis program-national sampling design and estimation procedures. USDA Forest Service, Southern Research Station, AshevilleGoogle Scholar
  8. Bellhouse DR (1985) Computing methods for variance estimation in complex surveys. J Off Stat 1:323–329Google Scholar
  9. Bellhouse DR (1988) Systematic sampling. In: Krishnaiah PR, Rao CR (eds) Sampling. Elsevier, Amsterdam, pp 125–145Google Scholar
  10. Bickford CA, Mayer CF, Ware KD (1963) An efficient sampling design for forest inventory: the northeastern forest survey. J For 61:826–833Google Scholar
  11. Biolley HE (1921) L’aménagement des forêts par la méthode expérimentale et spécialment la méthode du contrôle. Neuchatel, ParisGoogle Scholar
  12. Bitterlich W (1947) Die Winkelzählmessung. Allgemeine Forst- und Holzwirtschaftliche Zeitung 58:94–96Google Scholar
  13. Boon DR (1970) A critical review of timber survey methods in tropical rainforest. International Institute for Aerial Survey and Earth Sciences, Delft, p 35Google Scholar
  14. Bowden DC, Dixon GE, Frayer WE, Graybill FA, Jeyaratnam S, Johnston DC, Kent BM, LaBau VJ, Roberts E (1979) Multi-level sampling designs for resource inventories. Colorado State University, Ft. CollinsGoogle Scholar
  15. Breidenbach J, Antón-Fernández C, Petersson H, McRoberts RE, Astrup R (2014) Quantifying the model-related variability of biomass stock and change estimates in the Norwegian national forest inventory. For Sci 60:25–33Google Scholar
  16. Brewer KRW, Hanif M (1983) Sampling with unequal probability. In: Brillinger D, Fienberg SE, Gani J, Hartigan JA, Krickeberg K (eds) Lecture notes in statistics. Springer, Berlin/Heidelberg/New York, pp 1–164Google Scholar
  17. Casella G, Berger RL (2008) Statistical inference. Cengage Lerning Emea, AndoverGoogle Scholar
  18. Chambers RL, Clark RG (2012) An introduction to model-based survey sampling with applications. Oxford University Press, New YorkCrossRefGoogle Scholar
  19. Chen D (1998) Measurement errors in line transect surveys. Biometrics 54:899–908CrossRefGoogle Scholar
  20. Chen D, Cowling A (2001) Measurement errors in line transect surveys where detectability varies with distance and size. Biometrics 57:732–742PubMedCrossRefGoogle Scholar
  21. Chilés J-P, Delfiner P (2012) Geostatistics: modeling spatial uncertainty. Wiley, HobokenCrossRefGoogle Scholar
  22. Cochran WG (1977) Sampling techniques. Wiley, New YorkGoogle Scholar
  23. Correll RL, Cellier KM (1987) Effects of plot size, block size and buffer rows on the precision of forestry trials. Aust For Res 17:11–18Google Scholar
  24. Da Silva JA (1982) Aplicacao do reloscopio de banda larga em inventarios de florestas tropicais. Silvic Sao Paulo 16A:601–603Google Scholar
  25. Dalenius T, Gurney M (1951) The problem of optimal stratification Skand Akt 34:133–148Google Scholar
  26. Diggle PJ, Ribeiro PJ (2007) Model-based geostatistics. Springer, New YorkGoogle Scholar
  27. Domke GM, Woodall CW, Smith JE, Westfall JA, McRoberts RE (2012) Consequences of alternative tree-level biomass estimation procedures on U.S. forest carbon stock estimates. For Ecol Manage 270:108–116CrossRefGoogle Scholar
  28. Ducey MJ (2009) Sampling trees with probability nearly proportional to biomass. For Ecol Manage 258:2110–2116CrossRefGoogle Scholar
  29. FAO (2010) Global forest resources assessment 2010: main report. Food and Agriculture Organization of the United Nations. FAO, RomeGoogle Scholar
  30. Fiuller WA (2006) Measurement error models. Wiley, New YorkGoogle Scholar
  31. Flewelling JW, Thomas CE (1984) An improved estimator for merchantable basal area growth based on point samples. For Sci 30:813–821Google Scholar
  32. Fuller WA (2009) Sampling statistics. Wiley, New YorkCrossRefGoogle Scholar
  33. Gertner GZ (1984) The sensitivity of measurement error in stand volume estimations. Can J For Res 16:1120–1123CrossRefGoogle Scholar
  34. Gertner GZ, Köhl M (1995) An assessment of some nonsampling errors in a national survey using an error budget. For Sci 38:525–538Google Scholar
  35. Goelz SJ, Burk TE (1996) Measurement error causes bias in site index equations. Can J For Res 26:1585–1593CrossRefGoogle Scholar
  36. Grafström A (2010) On unequal probability sampling designs. Ph.D. thesis, SLU, UmeåGoogle Scholar
  37. Graves HS (1906) Forest mensuration. Wiley, New YorkGoogle Scholar
  38. Gray A (2003a) Monitoring stand structure in mature coastal Douglas-fir forests: effect of plot size. For Ecol Manage 175:1–16CrossRefGoogle Scholar
  39. Gray A (2003b) Monitoring stand structure in mature costal Douglas-fir forests: effect of plot size. For Ecol Manag 175:1–16CrossRefGoogle Scholar
  40. Green EJ, Köhl M, Strawderman WE (1992) Improved estimates for cell values in a two way table Biometrie. u. Informatik. in Medizin. u. Biologie 23:24–30Google Scholar
  41. Gregoire TG (1998) Design-based and model-based inference in survey sampling: appreciating the difference. Can J For Res 28:1429–1447CrossRefGoogle Scholar
  42. Gregoire TG, Scott CT (1990) Sampling at stand boundaries: a comparison of the statistical performance among eight methods. In: Burkhart HE, Bonnor GM, Lowe JJ (eds) Research in forest inventory, monitoring, growth and yield. School of Forestry and Wildlife Resources, Virginia Polytechnic Institute and State University, Blacksburg, pp 78–85Google Scholar
  43. Gregoire TG, Scott CT (2003) Altered selection probabilities caused by avoiding the edge in field surveys. JABES 8:36–47CrossRefGoogle Scholar
  44. Gregoire TG, Ståhl G, Naesset E, Gobakken T, Nelson R, Holm S (2011) Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, Norway. Can J Forest Res 41:83–95CrossRefGoogle Scholar
  45. Grosenbaugh LR (1952) Plotless timber estimates – new, fast, easy. J For 50:32–37Google Scholar
  46. Gurnaud A (1878) Cahier l’aménagement pour l’application de la méthode par contenance exposée sur la forêt des Eperous, 160Google Scholar
  47. Halme M, Tomppo E (2001) Improving the accuracy of multisource forest inventory estimates by reducing plot location error – a multicriteria approach. Remote Sens Environ 78:321–327CrossRefGoogle Scholar
  48. Hartley HO (1966) Systematic sampling with unequal probability and without replacement. J Am Stat Assoc 71:739–748CrossRefGoogle Scholar
  49. Hess GR, Bay JM (1997) Generating confidence intervals for composition-based landscape indexes. Landsc Ecol 12:309–320CrossRefGoogle Scholar
  50. Hush B, Beers TW, Kershaw JA (2003) Forest mensuration. Wiley, New YorkGoogle Scholar
  51. Jenks GF (1967) The data model concept in statistical mapping. In: Frenzel K (ed) International yearbook of cartography. Rand McNally, SkokieGoogle Scholar
  52. Kangas A (1998) On the bias and variance in tree volume predictions due to model and measurement errors. Scand J For Res 11:281–290CrossRefGoogle Scholar
  53. Keen EA (1950) The relaskop. Emp For Rev 29:253–264Google Scholar
  54. Keller M (2001) Aerial photography. In: Brassel P, Lischke H (eds) Swiss National Forest Inventory; methods and models of the second assessment. WSL, Birmensdorf, pp 45–64Google Scholar
  55. Köhl M (1994) Statistisches Design für das zweite Schweizerische Landesforstinventar: Ein Folgeinventurkonzept unter Verwendung von Luftbildern und terrestrischen Aufnahmen. In: Eidgenössischen Forschungsanstalt für Wald, S.u.L. (ed) Mitteilungen der WSL, Birmensdorf, p 141Google Scholar
  56. Köhl M, Brassel P (2001) Zur Auswirkung der Hangneigungskorrektur auf Schätzwerte im Schweizerischen Landesforstinventar (LFI). Schweizerische Zeitschrift für Forstwesen 152:215–225CrossRefGoogle Scholar
  57. Köhl M, Kushwaha SPS (1994) A four-phase sampling method for assessing standing volume using landsat-TM-data, aerial photography and field assessments. Commonw For Rev 73:35–42Google Scholar
  58. Köhl M, Marchetti M (2014) In: Pancel L, Köhl M (eds) Objectives and planning of forest inventories, Tropical forestry handbook. Springer, HeidelbergCrossRefGoogle Scholar
  59. Köhl M, Scott CT (1994) Zur Auswertung von Gruppenstichproben bei extensiven Forstinventuren. Allgemeine Forst- und Jagdzeitung 165:101–106Google Scholar
  60. Köhl M, Magnussen S, Marchetti M (2006) Sampling methods, remote sensing and GIS multiresource forest inventory. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  61. Köhl M, Scott CT, Lister AJ, Demon I, Plugge D (2015) Avoiding treatment bias of REDD+ monitoring by sampling with partial replacement. Carbon Balance and ManagementGoogle Scholar
  62. Kuusela K (1979) Sampling of tree stock by angle gauge in proportion to tree characteristics. Commun Inst For Fenn 95(7):14Google Scholar
  63. Laurans M, Hérault B, Vieilledent G, Vincent G (2014) Vertical stratification reduces competition for light in dense tropical forests. For Ecol Manage 329:79–88CrossRefGoogle Scholar
  64. Lesser VM, Kalsbeek WD (1999) Nonsampling errors in environmental surveys. JABES 4:473–488CrossRefGoogle Scholar
  65. Levy PS, Lemeshow S (2008) Sampling of populations: methods and applications. Wiley, New YorkCrossRefGoogle Scholar
  66. Li HG, Schreuder HT (1985) Adjusting estimates in large two-way tables in surveys. For Sci 31:366–372Google Scholar
  67. Little RJA (2004) To model or not to model? Competing modes of inference for finite population sampling. J Am Stat Assoc 99:546–556CrossRefGoogle Scholar
  68. Lloyd CJ (1999) Analysis of categorical variables. Wiley, New YorkGoogle Scholar
  69. Loetsch F (1957) Report to the government of Thailand on inventory methods for tropical forests. FAO report. FAO, RomeGoogle Scholar
  70. Loetsch F, Zöhrer F, Haller KE (1973) Forest inventory. BLV Verlagsanstalt, München/Bern/WienGoogle Scholar
  71. Lombardi F, Marchetti M, Corona P, Merlini P, Chirici G, Tognetti R, Burrascano S, Alivernini A, Puletti N (2015) Quantifying the effect of sampling plot size on the estimation of structural indicators in old-growth forest stands. For Ecol Manage 346:89–97CrossRefGoogle Scholar
  72. Magnussen S (1988) Tree height tarifs and volume estimation errors in New Brunswick. North J Appl For 15:7–13Google Scholar
  73. Magnussen S (2002) Fast pre-survey computation of the mean spatial autocorrelation in large plots composed of a regular array of secondary sampling units (SSUs) depend on the average within-plot autocorrelation. Math Modell Sci Comput 13:204–217Google Scholar
  74. Magnussen S (2003) Stepwise estimators for three-phase sampling of categorical variables. J Appl Stat 30:461–475CrossRefGoogle Scholar
  75. Magnussen S (2015) Arguments for a model based inference? For Int J For Sci 88(3):317–316Google Scholar
  76. Mandallaz D (2008) Sampling techniques for forest inventories. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  77. Matern B (1980) Spatial variation. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  78. McRoberts RE, Westfall JA (2013) Effects of uncertainty in model predictions of individual tree volume on large area volume estimates. For Sci 60:34–43Google Scholar
  79. McRoberts RE, Gobakken T, Næsset E (2012) Post-stratified estimation of forest area and growing stock volume using lidar-based stratifications. Remote Sens Environ 125:157–166CrossRefGoogle Scholar
  80. McRoberts RE, Liknes GC, Domke GM (2014) Using a remote sensing-based, percent tree cover map to enhance forest inventory estimation. For Ecol Manage 331:12–18CrossRefGoogle Scholar
  81. Mesavage C, Grosenbaugh LR (1956) Efficiency of several cruising designs on small tracts in North Arkansas. J For 54:569–576Google Scholar
  82. O’Regan WG, Arvanitis LG (1966) Cost effectiveness in forest sampling. For Sci 12:406–414Google Scholar
  83. Olsen A, Sedransk J, Edwards D, Gotway C, Ligget W, Rathburn S, Reckhow K, Young L (1999) Statistical issues for monitoring ecological and natural resources in the United States. Environ Monit Assess 54:1–45CrossRefGoogle Scholar
  84. Palace MW, Sullivan FB, Ducey MJ, Treuhaft RN, Herrick C, Shimbo JZ, Mota-E-Silva J (2015) Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data. Remote Sens Environ 161:1–11CrossRefGoogle Scholar
  85. Pandey D (2008) National forest inventory in India. Workshop on “Monitoring of reduction of emissions from forest degradation” Paris, COMIFAC. http://pfbc-cbfp.org/docs/redd-paris032008/13%20-%20Pandey%20National%20lForest%20Inventory-India.pdf
  86. Payandeh B, Ek AR (1986) Distance methods and density estimators. Can J For Res 16:918–924CrossRefGoogle Scholar
  87. Pelz D, Cunia T (1985) Forest inventories in Europe. Mitt Abt Forstl Biom, Freiburg, vol 3, p 85Google Scholar
  88. Pollard JH (1971) On distance estimators of density in randomly distributed forests. Biometrics 27:991–1002CrossRefGoogle Scholar
  89. Pommerening A, Schmidt M (1998) Modifizierung des Stammabstandsverfahrens zur Verbesserung der Stammzahl- und Grundflächenschätzung. Forstarchiv 69:47–53Google Scholar
  90. Pretzsch H (2009) Forest dynamics, growth and yield: from measurement to model. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  91. Prodan M (1965) Holzmesslehre. Sauerländers, FrankfurtGoogle Scholar
  92. Prodan M (1968) Punktstichprobe für die Forsteinrichtung. Forst- u Ho/zw 23:225–226Google Scholar
  93. Puffenberger HE (1976) Forest inventories in the tropics: a consideration. J For 74:28–38Google Scholar
  94. Ranneby B, Rovainen E (1995) On the determination of time intervals between remeasurements of permanent plots. For Ecol Manage 71:195–202CrossRefGoogle Scholar
  95. Rao CR (1988) Variance estimation in sample surveys. Elsevier, AmsterdamCrossRefGoogle Scholar
  96. Rao JNK (2003) Small area estimation. Wiley, HobokenCrossRefGoogle Scholar
  97. Rice B, Weiskittel A, Wagner R (2014) Efficiency of alternative forest inventory methods in partially harvested stands. Eur J For Res 133:261–272CrossRefGoogle Scholar
  98. Roesch FA, Van Deusen PC (2013) Time as a dimension of the sample design in national-scale forest inventories. For Sci 59:610–622Google Scholar
  99. Royall RM (2001) Model robust confidence intervals using maximum likelihood estimators. Int Stat Rev 54:221–226CrossRefGoogle Scholar
  100. Saarela S, Grafström A, Ståhl G, Kangas A, Holopainen M, Tuominen S, Nordkvist K, Hyyppä J (2015) Model-assisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information. Remote Sens Environ 158:431–440CrossRefGoogle Scholar
  101. Saborowski J (1990) Schätzung von Varianzen und Konfidenzintervallen aus mehrstufigen Stichproben am Beispiel von Wladschadensinventuren. In, Schriften aus der FOrstlichen Fakultät der Universität Göttingen und der niedersächsischen forstlichen Versuchsanstalt GöttingenGoogle Scholar
  102. Saborowski J, Smelko S (1998) Evaluation of inventories based on sample plots of variable size. Allg Forst- und Jagdz 169:71–75Google Scholar
  103. Särndal C-E, Swensson B, Wretman J (2003) Model assisted survey sampling. Springer, HeidelbergGoogle Scholar
  104. Schlund M, von Poncet F, Kuntz S, Schmullius C, Hoekman DH (2015) TanDEM-X data for aboveground biomass retrieval in a tropical peat swamp forest. Remote Sens Environ 158:255–266CrossRefGoogle Scholar
  105. Schmid P (1969) Stichproben am Waldrand. In: Eidgen. Anstalt Forstl Versuchswes (ed) Bericht, pp 234–303Google Scholar
  106. Schreuder HT, Banyard SG, Brink GE (1987) Comparison of three sampling methods in estimating stand parameters for a tropical forest. For Ecol Manage 21:119–127CrossRefGoogle Scholar
  107. Schreuder H, Gregoire TG, Wood GB (1992) Sampling methods for multiresource forest inventory. Wiley, New YorkGoogle Scholar
  108. Schreuder HT, Li J, Scott CT (1993) Estimation with different stratification at two occasions. For Sci 39:368–382Google Scholar
  109. Schroeder TA, Healey SP, Moisen GG, Frescino TS, Cohen WB, Huang C, Kennedy RE, Yang Z (2014) Improving estimates of forest disturbance by combining observations from Landsat time series with U.S. Forest Service Forest Inventory and Analysis data. Remote Sens Environ 154:61–73CrossRefGoogle Scholar
  110. Scott CT (1984) A new look at sampling with partial replacement. For Sci 30:157–166Google Scholar
  111. Scott CT (1986) An evaluation of sampling with partial replacement. in: use of auxiliary information in natural resource inventories. Society of American Foresters (SAF), Blacksburg, pp 74–79Google Scholar
  112. Scott CT (1998) Sampling methods for estimating change in forest resources. Ecol Appl 8:228–233CrossRefGoogle Scholar
  113. Scott CT, Köhl M (1994) Sampling with partial replacement and stratification. For Sci 40:30–46Google Scholar
  114. Sherman M (1996) Variance estimation for statistics computed from spatial lattice data. J R Stat Soc Ser B 58:509–523Google Scholar
  115. Sims DA, Gamon JA (2003) Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens Environ 84:526–537CrossRefGoogle Scholar
  116. Snedecor GW, Cochran WG (1989) Statistical methods. 8th edn. Iowa State University Press, Iowa CityGoogle Scholar
  117. Stehman SV (1992) Comparison of systematic and random sampling for estimating the accuracy of maps generated from remotely sensed data. Photogramm Eng Remote Sens Environ 58:1343–1350Google Scholar
  118. Stevens D, Olsen A (2004) Spatially balanced sampling of natural resources. J Am Stat Assoc 99:262–278CrossRefGoogle Scholar
  119. Stott CB, Ryan EJ (1939) A permanent sample technique adapted to commercial timber stands. J For 37:347–349Google Scholar
  120. Stott CB, Semmes G (1962) Our changing inventory methods and the CFI system in North America. In: Proceedings of the 5th world forest congress, SeattleGoogle Scholar
  121. Strand L (1958) Sampling for volume along a line. Norske Skogsforsøksv, ÅsGoogle Scholar
  122. Sukhatme PV, Sukhatme BV, Sukhatme S, Asok C (1984) Sampling theory of surveys with applications. Iowa State University Press, AmesGoogle Scholar
  123. Tardif G (1965) Some considerations concerning the establishment of optimum plot size in forest survey. For Chron 41:93–102CrossRefGoogle Scholar
  124. Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, Bishop JRB, Marques TA, Burnham KP (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. J Appl Ecol 47:5–14PubMedPubMedCentralCrossRefGoogle Scholar
  125. Thompson SK (1992) Sampling. Wiley, New York, p 343Google Scholar
  126. Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (2010) National forest inventories – pathways for common reporting. Springer, HeidelbergCrossRefGoogle Scholar
  127. Tomppo EO, Heikkinen J, Henttonen HM, Ihalainen A, Katila M, Mäkelä H, Tuomainen T, Vainikainen N (2011) Designing and conducting a forest inventory – case: 9th National Forest Inventory of Finland. Springer, DordrechtCrossRefGoogle Scholar
  128. Uebelhör K (1988) Praktische Erfahrungen mit Winkelzählprobe und Breitbandrelaskop im tropischen Regenwald. Forstarchiv 59:47–52Google Scholar
  129. Valbuena R, Mauro F, Rodriguez-Solano R, Manzanera JA (2010) Accuracy and precision of GPS receivers under forest canopies in a mountainous environment. Span J Agric Res 8:1047–1057CrossRefGoogle Scholar
  130. Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CAB, WallingfordGoogle Scholar
  131. Veloso de Freitas J (2009) Forest monitoring: the national forest inventory-Brazil. In: Brazilian Norwegian workshop on forest and marine monitoring (ed). http://www.dsr.inpe.br/Brazil_Norway_Workshop/JOBERTO_FREITAS_The_National_Forest_Service_Inventory_and_Monitoring_Program.pdf
  132. Walters DK, Burkhart HE, Reynolds MRJ, Gregoire TG (1991) A Kalman filter approach to localizing height-age equations. For Sci 37:1526–1537Google Scholar
  133. Ware KD, Cunia T (1965) Continuous forest inventory, partial replacement of samples and multiple regression. For Sci 11:480–502Google Scholar
  134. Weiskittel AR, Hann DW, Kershaw JA, Vanclay JK (2011) Forest growth and yield modeling. Wiley, ChichesterCrossRefGoogle Scholar
  135. Williams DL (1996) Adaptive optimization of renewable natural resources: solution algorithms and a computer program. Ecol Modell 93:101–111CrossRefGoogle Scholar
  136. Wolter MK (1985) Introduction to variance estimation. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  137. Wolter KM (2007) Introduction to variance estimation. Springer, New YorkGoogle Scholar
  138. Wulder FSE, Lavigne MB (1996) High spatial resolution optical image texture for improved estimation of forest stand leaf area index. Can J Remote Sens 24:441–449CrossRefGoogle Scholar
  139. Zar JH (2010) Biostatistical analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar
  140. Zeide B (1980) Plot size optimization. For Sci 26:251–257Google Scholar
  141. Zhu JJ, Matsuzaki T, Gonda Y (2003) Optical stratification porosity as a measure of vertical canopy structure in a Japanese coastal forest. For Ecol Manage 173:89–104CrossRefGoogle Scholar
  142. Zingg A (1988) Schweizerisches Landesforstinventar, Anleitung für die Erstaufnahme 1982–1986. In: Versuchswesen EAF (ed), BirmensdorfGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Center for Wood SciencesInstitute of World Forestry, University of HamburgHamburgGermany
  2. 2.Natural Resources CanadaVictoriaCanada

Personalised recommendations