Encyclopedia of Immunotoxicology

2016 Edition
| Editors: Hans-Werner Vohr

Popliteal Lymph Node Assay, Secondary Reaction

Reference work entry
DOI: https://doi.org/10.1007/978-3-642-54596-2_1201

Synonyms

Short Description

The secondary PLNA (reviewed in Pieters et al. (2002), Pieters and Albers (1999), Goebel et al. (1996), Ravel and Descotes (2005)) aims at determining a secondary T-lymphocyte response to a low-molecular-weight chemical by injecting the chemical subcutaneously into one hind footpad of already-sensitized mice or rats. The administered dose has to be small enough not to elicit a primary immune response in nonsensitized animals, i.e., it should not suffice for stimulation of naïve T lymphocytes. The immune response against the injected chemical or antigen is quantified by analyzing one or more parameters of the draining popliteal lymph node (PLN), such as PLN weight, PLN cell number, cell surface marker expression on PLN cells, or PLN cell proliferation measured, for example, as 3H-methyl thymidine incorporation.

Characteristics

In the direct PLNA, a single injection of the test chemical is administered...

This is a preview of subscription content, log in to check access

References

  1. Ewens S, Wulferink M, Goebel C, Gleichmann E (1999) T cell-dependent immune reactions to reactive benzene metabolites in mice. Arch Toxicol 73:159–167PubMedCrossRefGoogle Scholar
  2. Friedrich K, Delgado IF, Santos LM, Paumgartten FJ (2007) Assessment of sensitization potential of monoterpenes using the rat popliteal lymph node assay. Food Chem Toxicol 45:1516–1522PubMedCrossRefGoogle Scholar
  3. Goebel C, Kubicka-Muranyi M, Tonn T, Gonzalez J, Gleichmann E (1995) Phagocytes render chemicals immunogenic: oxidation of gold(I) to the T cell-sensitizing gold(III) metabolite generated by mononuclear phagocytes. Arch Toxicol 69:450–459PubMedCrossRefGoogle Scholar
  4. Goebel C, Griem P, Sachs B, Bloksma N, Gleichmann E (1996) The popliteal lymph node assay in mice: screening of drugs and other chemicals for immunotoxic hazard. Inflamm Res 45(Suppl 2):S85–S90PubMedGoogle Scholar
  5. Kubicka-Muranyi M, Goebels R, Goebel C, Uetrecht J, Gleichmann E (1993) T lymphocytes ignore procainamide, but respond to its reactive metabolites in peritoneal cells: demonstration by the adoptive transfer popliteal lymph node assay. Toxicol Appl Pharmacol 122:88–94PubMedCrossRefGoogle Scholar
  6. Kubicka-Muranyi M, Kremer J, Rottmann N et al (1996) Murine systemic autoimmune disease induced by mercuric chloride: T helper cells reacting to self proteins. Int Arch Allergy Immunol 109:11–20PubMedCrossRefGoogle Scholar
  7. Pieters R, Albers R (1999) Screening tests for autoimmune-related immunotoxicity. Environ Health Perspect 107(Suppl 5):673–677PubMedCentralPubMedCrossRefGoogle Scholar
  8. Pieters R, Ezendam J, Bleumink R, Bol M, Nierkens S (2002) Predictive testing for autoimmunity. Toxicol Lett 127:83–91PubMedCrossRefGoogle Scholar
  9. Ravel G, Descotes J (2005) Popliteal lymph node assay: facts and perspectives. J Appl Toxicol 25:451–458PubMedCrossRefGoogle Scholar
  10. Vial T, Carleer J, Legrain B, Verdier F, Descotes J (1997) The popliteal lymph node assay: results of a preliminary interlaboratory validation study. Toxicology 122:213–218PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Symrise AGQR – ToxicologyHolzmindenGermany