Skip to main content

Turbulence Theory

  • Reference work entry
  • First Online:
Handbook of Geomathematics
  • 4252 Accesses

Abstract

The word turbulence comes from late Latin “turbulentia” which means “full of commention.” It is defined as a “violent or unsteady movement of air or water, or of some other fluid” (Oxford Dictionary of English 2010). Thus, it is a process that dissipates or mixes. The antonyms are unity or homogeneity: they help us to understand more clearly what turbulence concretely means – turbulence mixes and disperses the medium in which it develops, and then it disappears once homogeneity returns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz M, Segun IA (1972) Handbook of mathematical functions. Dover, New York edition

    MATH  Google Scholar 

  • Abry P, Goncalves O, Flandrin P (1995) Wavelets, spectrum estimation and 1/f processes. In: Antoniadis A, Oppenheim G (eds) Wavelets and statistics. Lecture notes in statistics, vol 103. Springer, New York pp 15–30

    Google Scholar 

  • Allan DW (1987) Time and frequency (time domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans Ultrason Ferroelectr Freq Control UFFC-34(6):647–654

    Article  MathSciNet  Google Scholar 

  • Armstrong JW Sramek RA (1982) Observations of tropospheric phase scintillations at 5 GHz on vertical paths. Radio Sci 17(6):1579–1586

    Article  Google Scholar 

  • Banta RM, Newsom RK, Lundquist JK (2002) Nocturnal low-level jet characteristics over Kansas during cases-99. Bound Layer Meteorol 105:221–252

    Article  Google Scholar 

  • Barnes J, Chi AR, Cutler LS, Healey DJ, Leeson DB, McGunigal TE, Mullen JA, Smith WL, Sydnor RL, Vessot RF, Winkler GM (1971) Characterization of frequency stability. IEEE Trans Instrum Meas 20:105120

    Google Scholar 

  • Beutler G, Bauersima I, Gurtner W, Rothacher M (1987) Correlations between simultaneous GPS double difference carrier phase observations in the multistation mode: implementation considerations and first experiences. Manisc Geod 12(1):40–44

    Google Scholar 

  • Bevis G, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol Climatol 33(3):379–386

    Article  Google Scholar 

  • Bischoff W, Heck B, Howind J, Teusch A (2005) A procedure for testing the assumption of homoscedasticity in least-squares residuals: a case study of GPS carrier phase observations. J Geod 78(7–8):397–404

    Article  MATH  Google Scholar 

  • Boussinesq J (1877) Essai sur la theorie des eaux courantes, Memoires presentes par divers savants ‘a l’ Academie des Sciences XXIII, 1–680

    Google Scholar 

  • Brunner FK, Hartinger H, Troyer L (1999) GPS signal diffraction modelling: the stochastic SIGMA-Dmodel. J Geod 73(5):259–267

    Article  Google Scholar 

  • Coulman CE (1990) Atmospheric Structure, Turbulence and Radioastronomical “Seeing”. Proceedings URSI/IAU Symposium on Radio Astronomical Seeing Beijing/Oxford, International Academic Publishers/Pergamon Press, pp. 11–20

    Google Scholar 

  • Coulman CE, Vernin J (1991) Significance of anisotropy and the outer scale of turbulence for optical and radio seeing. Appl Opt 30(1):118–126

    Article  Google Scholar 

  • Cornish CR, Bretherton CS (2006) Maximal overlap wavelet statistical analysis with application to atmospheric turbulence. Bound Layer Meteorol 119(2):339–377

    Article  Google Scholar 

  • Cressie N (1993) Statistics for spatial data. Wiley, New York/Chichester/Toronto/Brisbane/ Singapore

    Google Scholar 

  • Danielson EW, Levin J, Abrams E (2003) Meteorology, McGraw Hill, Boston

    Google Scholar 

  • Davis JL (2001) Atmospheric water-vapor signals in GPS data: synergies, correlations, signals and errors. Phys Chem Earth 26(6–8):513–522

    Article  Google Scholar 

  • De Moor G (2006) Couche Limite atmosphérique et turbulence, les bases de la micro météorologie dynamique. Météo-France, Cours et manuels n ̈16, Toulouse

    Google Scholar 

  • Domingues MO, Mendes O, Mendes da Costa A (2004) On wavelet techniques in atmospheric sciences. Adv Space Res 35(5):831–842

    Article  Google Scholar 

  • Dravskikh AF, Finkelstein AM (1979) Tropospheric limitations in phase and frequency coordinate measurements in astronomy. Astrophys Space Sci 60(2):251–265

    Article  Google Scholar 

  • Emardson TR, Jarlemark POJ (1999) Atmospheric modeling in GPS analysis and its effect on the estimated geodetic parameters. J Geod 73(6):322–331

    Article  Google Scholar 

  • El-Rabbany A (1994) The effect of physical correlations on the ambiguity resolution and accuracy estimation in GPS differential positioning. PhD thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick

    Google Scholar 

  • Farge M (1992) Wavelet transform and their applications to turbulence. Ann Rev Fluid Mech 4:395–457

    Article  MathSciNet  Google Scholar 

  • Fried DL (1967) Propagation of a spherical wave in a turbulent medium. J Opt Soc Am 57(2):175–180

    Article  Google Scholar 

  • Gage KS (1979) Evidence for a k to the -5/3 law inertial range in mesoscale two-dimensional turbulence. J Atmos Sci 36:1950–1954

    Article  Google Scholar 

  • Hagelberg CR, Gamage NKK (1994) Structure-Preserving wavelet decompositions of intermittent turbulence. Bound Layer Meteorol 70:217–246

    Article  Google Scholar 

  • Hartinger H, Brunner FK (1999) Variances of GPS phase observations: the SIGMA-\(\varepsilon\) model. GPS Solut 2(4):35–43

    Article  Google Scholar 

  • Hogg DC, Guiraud FO, Sweezy WB (1981) The short-term temporal spectrum of precipitable water vapor. Science 213(4512):1112–1113

    Article  Google Scholar 

  • Howind J (2005) Analyse des stochastischen Modells von GPS-Trägerphasenbeobachtungen. Deutsche Geodätische Kommission, Munich Heft Nr. 584

    Google Scholar 

  • Howind J, Kutterer H, Heck B (1999) Impact of temporal correlations on GPS-derived relative point positions. J Geod 73(5):246–258

    Article  MATH  Google Scholar 

  • Ishimaru A (1984) Wave propagation and scattering in random media, vol II. Academic, New York

    Google Scholar 

  • Jin SG, Luo O, Ren C (2010) Effects of physical correlations on long-distance GPS positioning and zenith tropospheric delay estimates. Adv Space Res 46(2):190–195

    Article  Google Scholar 

  • Kleijer F (2004) Tropospheric modeling and filtering for precise GPS leveling. PhD thesis, Netherlands Geodetic Commission, Publications on Geodesy 56

    Google Scholar 

  • Koch KR, Kuhlmann H, Schuh WD (2010) Approximating covariance matrices estimated in multivariate models by estimated auto- and cross-covariances. J Geod 84(6):383–397

    Article  Google Scholar 

  • Kolmogorov NA (1941) Dissipation of energy in the locally isotropic turbulence. Proc USSR Acad Sci 32:16–18. (Russian), translated into English by Kolmogorov, 8 July 1991. “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers”. Proc R Soc Lond Ser A Math Phys Sci 434(1980):15–17

    MathSciNet  Google Scholar 

  • Kolmogorov NA (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. Journal of Fluid Mechanics, 13, pp 82–85

    Article  MathSciNet  MATH  Google Scholar 

  • Kraichnan RH (1967) Inertial ranges in two-dimensional turbulence. Phys Fluids 10:1417–1423

    Article  Google Scholar 

  • Laing D (1991) The earth system: an introduction to earth science, Wm. C. Brown Publishers, Dubuque University of California

    Google Scholar 

  • Lay OP (1997) The temporal power spectrum of atmospheric fluctuations due to water vapor. Astron Astrophys Suppl Ser 122:535–545

    Article  Google Scholar 

  • Leandro R, Santos MC (2006) An Empirical Stochastic Model for GPS. International Association of Geodesy Symposia (Ed. C. Rizos), IAG, IAPSO and IABO Joint Assembly “Dynamic Planet”, Cairns, Australia, 22–26 August 2005, Springer, pp. 179–185.

    Google Scholar 

  • Lesieur M (2008) Turbulence in fluids, 4th edn. Springer, Dordrecht

    Book  MATH  Google Scholar 

  • Lin, CC (1953) On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes equation. Q Appl Maths 10:295–306

    MATH  Google Scholar 

  • Lindsey WC, Chi CM (1976) Theory of oscillator instability based upon structure functions. Proc IEEE 64(12):1652–1666

    Article  MathSciNet  Google Scholar 

  • Luo X (2013) GPS stochastic modelling – signal quality measures and ARMA processes. Springer theses: recognizing outstanding Ph.D. research. Springer, Berlin/Heidelberg

    Google Scholar 

  • Mahrt L (1986) On the shallow motion approximations. J Atmos Sci 43:1036–1044

    Article  Google Scholar 

  • Mahrt L (1991) Eddy assymmetry in the sheared heated boundary layer. J Atmos Sci 48(3):472–492

    Article  Google Scholar 

  • Mathieu J, Scott J (2000) An introduction to turbulent flow. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Monin AS, Yaglom AM (1975) Statistical fluid mechanics, vol 2. MIT, Cambridge

    Google Scholar 

  • Muzy JF, Bacry E, Arneodo A (1993) Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method. Phys Rev E 47(2):875–884

    Article  Google Scholar 

  • Naudet CJ (1996) Estimation of tropospheric fluctuations using GPS data. TDA progress report, pp 42–126

    Google Scholar 

  • Nastrom GD, Gage KS (1985) A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircrafts. J Atmos Sci 42(9):950–960

    Article  Google Scholar 

  • Nichols-Pagel GA, Percival DB, Reinhall PG, Riley JJ (2008) Should structure functions be used to estimate power laws in turbulence? A comparative study. Physica D Nonlinear Phenom 237(5):665–677

    Article  MathSciNet  MATH  Google Scholar 

  • Nilsson T, Haas R (2010) Impact of atmospheric turbulence on geodetic very long baseline interferometry. J Geophys Res 115:B03407

    Google Scholar 

  • Nilsson T, Haas R, Elgered G (2007) Simulations of atmospheric path delays using turbulence models. In: Böhm J, Pany A, Schuh H (eds) Proceedings of 18th European VLBI for Geodesy and Astrometry (EVGA) working meeting, Vienna University of Technology, Vienna, pp 175–180

    Google Scholar 

  • Oxford Dictionary of English (2010) Oxford University Press, Auflage, 2nd edn., revised (11 Aug 2010)

    Google Scholar 

  • Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Reddi SS (1984) Eigenvector properties of Toeplitz matrices and their application to spectral analysis of time series. Signal Process 7:45–56

    Article  MathSciNet  Google Scholar 

  • Riley WJ (2008) Handbook of frequency stability analysis. NIST special publication 1065

    Google Scholar 

  • Ripley BD (1981) Spatial Statistics. Wiley, pp. 252

    Book  MATH  Google Scholar 

  • Rutman J (1978) Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress. Proc IEEE 66(9)1048–1075

    Article  Google Scholar 

  • Romero-Wolf A, Jacobs CS, Ratcli JT (2012) Effects of tropospheric spatio-temporal correlated noise on the Analysis of space geodetic data, IVS general meeting proceedings, Madrid, 5–8 Mar 2012

    Google Scholar 

  • Satirapod C, Ogaja C, Wang J, Rozos C (2001) GPS analysis with the aid of wavelets. In: 5th international symposium on satellite navigation technology and applications, Canberra, 24–27 July, paper 39

    Google Scholar 

  • Schön S, Brunner FK (2006) Modelling physical correlation of GPS phase observations: first results. Kahmen H, Chrzanowski A (eds) Proceedings of the 3rd IAG symposium on geodesy for geotechnical and structural engineering/12th FIG symposium on deformation measurements, Baden, 22–24 May 2006, pp PS-18.1–8

    Google Scholar 

  • Schön S, Brunner FK (2007) Treatment of refractivity fluctuations by fully populated variance-covariance matrices. In: Proceedings of the 1st colloquium scientific and fundamental aspects of the galileo programme, Toulouse Okt

    Google Scholar 

  • Schön S, Brunner FK (2008a) Atmospheric turbulence theory applied to GPS carrier-phase data. J Geod 82(1):47–57

    Article  Google Scholar 

  • Schön S, Brunner FK (2008b) A proposal for modeling physical correlations of GPS phase observations. J Geod 82(10):601–612

    Article  Google Scholar 

  • Seeber G (2003) Satellite geodesy. de Gruyter, Berlin

    Book  Google Scholar 

  • Stotskii A (1973) Concerning the fluctuation of characteristics of the Earth’s troposphere. Radiophys Quantum Electron 16(5):620–622

    Article  Google Scholar 

  • Stotskii A, Stotskaya IM (2001) Structure analysis of wet path delays in IRIS-S experiments. In: Behrend D, Rius A (eds) Proceedings of the 15th working meeting on European VLBI, Barcelona, 7–8 Sept 2001, p 154

    Google Scholar 

  • Stotskii A, Elgered KG, Stotskaya M (2006) Structure analysis of path delay variations in the neutral atmosphere. Astron Astrophys Trans J Eurasian Astron Soc 17(1):59–68

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Springer, Dordrecht

    Book  MATH  Google Scholar 

  • Tatarskii VI (1971a) Wave propagation in a turbulent medium. McGraw-Hill, New York

    Google Scholar 

  • Tatarskii VI (1971b) The effects of the turbulent atmosphere on wave propagation. National Technical Information Service. Springfield VA VA22161

    Google Scholar 

  • Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond Ser A CLXIV:476–490

    Google Scholar 

  • Teunissen PJG, Kleusberg A (1998) GPS for Geodesy 2nd ed. Springer Verlag Berlin Heidelberg

    Book  Google Scholar 

  • Thomson MC Marler F, Allen K (1980) Measurement of the microwave structure constant profile. IEEE Trans Antennas Propag, 28(2):278–280

    Article  Google Scholar 

  • Thompson AR, Moran JM, Swenson GW (2004) Interferometry and synthesis in radio astronomy. Wiley, Hoboken

    Google Scholar 

  • Tiberius C, Jonkman N, Kenselaar F (1999) The stochastics of GPS observables. GPS World 10(2):49–54

    Google Scholar 

  • Treuhaft RN, Lanyi GE (1987) The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci 22(2):251–265

    Article  Google Scholar 

  • Treuhaft RN, Lowe ST (1995) Vertical scales of turbulence at the Mt Wilson observatory. In: JPL TRS 1992+BEACON eSpace at Jet Propulsion Laboratory, California Institute of Technology

    Google Scholar 

  • Van der Hoven I (1957) Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J Meteorol 14:160–164

    Article  Google Scholar 

  • Vennebusch M, Schön S (2012) Generation of slant tropospheric delay time series based on turbulence theory. In: Kenyon S, Pacino M, Morti U (eds): Proceedings of geodesy for planet earth – IAG 2009, Buenos Aires, International association of geodesy symposia, vol 136, pp 801–808. Springer, New York/Berlin Heidelberg.

    Google Scholar 

  • Vennebusch M, Schön S, Weinbach U (2011) Temporal and spatial stochastic behavior of high-frequency slant tropospheric delays from simulations and real GPS data. Adv Space Res 47(10):1681–1690

    Article  Google Scholar 

  • Vincent A, Meneguzzi M (1991) The spatial structure and statistical properties of homogeneous turbulence. J Fluid Mech 225:1–20

    Article  MATH  Google Scholar 

  • Voitsekhovich VV (1995) Outer scale of turbulence: comparison of different models. J Opt Soc Am A 12(6):1346–1353

    Article  MathSciNet  Google Scholar 

  • Wang J, Satirapod C, Rizos C (2002) Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. J Geod 76(2):95–104

    Article  MATH  Google Scholar 

  • Wheelon AD (2001) Electromagnetic scintillation part I geometrical optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Whichter B, Guttorp P, Percival D (2000) Wavelet analysis of covariance with application to atmospheric time series. J Geophys Res Atmos 105:14941–14962

    Article  Google Scholar 

  • Wieser A, Brunner FK (2000) An extended weight model for GPS phase observations. Earth Planet Space 52:777–782

    Article  Google Scholar 

  • Williams S (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76(9–10):483–494. OU 2002?

    Google Scholar 

  • Williams S, Bock Y, Fang P (1998) Integrated satellite interferometry: tropospheric noise, GPS estimates and implication for interferometric synthetic aperture radar products. J Geophys Res 103(B11):27051–27067

    Article  Google Scholar 

  • Wright MCH (1996) Atmospheric phase noise and aperture synthesis imaging at millimeter wavelengths. Publ Astron Soc Pac 108(724):520–534

    Article  Google Scholar 

  • Yaglom AM (1987) Correlation theory of stationary and related random functions I, II, 1st edn. Springer, New York/Berlin/Heilderberg

    Google Scholar 

Download references

Acknowledgements

The authors thank FK Brunner for his introduction into turbulence theory. The stay at his institute at TU Graz, Austria, was funded by a Feodor Lynen Fellowship of Alexander von Humboldt Foundation, which is gratefully acknowledged. The first author thanks Dr. Markus Vennbusch for fruitful discussions and new development at IfE Hannover. The German Research Foundation (DFG) is thanked for the financial support to study the subject in the projects SCHO1314/1-1, 1-2 as well as SCHO1314/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Schön .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schön, S., Kermarrec, G. (2015). Turbulence Theory. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_77

Download citation

Publish with us

Policies and ethics