Definitions
A team of robots is heterogeneous when at least one of its members is behaviorally or physically different from any of the other team members.
Overview
Heterogeneity is fundamental to life and commonplace in natural systems. While the scientific field has devoted itself to the analysis of diversity in natural communities for decades, research into the benefits of heterogeneity in engineered teams is relatively nascent. Homogeneous teams are capable of solving complex tasks through coordination and cooperation, yet heterogeneity is even more powerful because it allows for collaboration Prorok et al. (2021); Yang et al. (2018). (Our usage of the terms coordination, cooperation, and collaboration aligns with the definitions in Prorok et al. (2021).)
The aim of this chapter is to provide an overview of heterogeneous teams, from a robotics perspective. We begin by introducing a taxonomy of heterogeneous systems. Then, we...
References
Ayanian N (2019) Dart: Diversity-enhanced autonomy in robot teams. Int J Robotics Res 38(12–13):1329–1337
Balch T (1997) Learning roles: behavioral diversity in robot teams. In: AAAI workshop on multiagent learning
Balch T (2000) Hierarchic social entropy: An information theoretic measure of robot group diversity. Auton Robot 8(3):209–238
Berman S, Halász A, Kumar V, Pratt S (2007) Bio-inspired group behaviors for the deployment of a swarm of robots to multiple destinations. In: Proceedings 2007 IEEE international conference on robotics and automation (ICRA). IEEE, pp 2318–2323
Bernstein DS, Givan R, Immerman N, Zilberstein S (2002) The complexity of decentralized control of Markov decision processes. Math Oper Res 27(4):819–840
Bettini M, Shankar A, Prorok A (2023a) Heterogeneous multi-robot reinforcement learning. In: Proceedings of the 22nd international conference on autonomous agents and multiagent systems, international foundation for Autonomous Agents and Multiagent Systems, AAMAS ‘23
Bettini M, Shankar A, Prorok A (2023b) System neural diversity: measuring behavioral heterogeneity in multi-agent learning. arXiv preprint arXiv:230502128
Blumenkamp J, Prorok A (2021) The emergence of adversarial communication in multi-agent reinforcement learning. In: Conference on robot learning, PMLR, pp. 1394–1414
Boroson ER, Ayanian N (2019) 3d keypoint repeatability for heterogeneous multi-robot slam. In: 2019 International Conference on Robotics and Automation (ICRA), IEEE, pp 6337–6343
Carlone L, Pinciroli C (2019) Robot co-design: beyond the monotone case. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE, pp 3024–3030
Chand P, Carnegie DA (2013) Mapping and exploration in a hierarchical heterogeneous multi-robot system using limited capability robots. Robot Auton Syst 61(6):565–579
Chenghao L, Wang T, Wu C, Zhao Q, Yang J, Zhang C (2021) Celebrating diversity in shared multi-agent reinforcement learning. Adv Neural Inf Process Syst 34:3991–4002
Christianos F, Papoudakis G, Rahman MA, Albrecht SV (2021) Scaling multi-agent reinforcement learning with selective parameter sharing. In: International conference on machine learning. PMLR, pp 1989–1998
Chvatal V (1979) A Greedy heuristic for the set-covering problem. Math Oper Res 4(3):233–235
Debord M, Hönig W, Ayanian N (2018) Trajectory planning for heterogeneous robot teams. In: 2018 IEEE/RSJ international conference on Intelligent Robots and Systems (IROS), IEEE, pp 7924–7931
Dias MB, Zlot R, Kalra N, Stentz A (2006) Market-based multirobot coordination: a survey and analysis. Proc IEEE 94(7):1257–1270
Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39
Emam Y, Mayya S, Notomista G, Bohannon A, Egerstedt M (2020) Adaptive task allocation for heterogeneous multi-robot teams with evolving and unknown robot capabilities. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 7719–7725
Emam Y, Notomista G, Glotfelter P, Egerstedt M (2021) Data-driven adaptive task allocation for heterogeneous multi-robot teams using robust control barrier functions. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 9124–9130
Foerster J, Assael IA, De Freitas N, Whiteson S (2016) Learning to communicate with deep multiagent reinforcement learning. Adv Neural Inf Proces Syst (NeurIPS) 29
Foerster J, Farquhar G, Afouras T, Nardelli N, Whiteson S (2018) Counterfactual multi-agent policy gradients. In: Proceedings of the AAAI conference on artificial intelligence, vol 32
Gerkey BP, Mataric MJ (2004) A formal analysis and taxonomy of task allocation in multi-robot systems. Int J Robotics Res 23(9):939–954
Goldberg D, Mataric MJ (1997) Interference as a tool for designing and evaluating multi-robot controllers. In: AAAI/IAAI, pp 637–642
Kim S, Santos M, Guerrero-Bonilla L, Yezzi A, Egerstedt M (2022) Coverage control of mobile robots with different maximum speeds for time-sensitive applications. IEEE Robot Autom Lett 7(2):3001–3007
Korte B, Vygen J (2000) Combinatorial optimization: theory and algorithms. Springer, Berlin
Kortvelesy R, Prorok A (2022) Qgnn: Value function factorisation with graph neural networks. arXiv preprint arXiv:220513005
Li L, Martinoli A, Abu-Mostafa YS (2004) Learning and measuring specialization in collaborative swarm systems. Adapt Behav 12(3–4):199–212
Li Q, Gama F, Ribeiro A, Prorok A (2020) Graph neural networks for decentralized multi-robot path planning. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp 11785–11792
Lowe R, Wu YI, Tamar A, Harb J, Pieter Abbeel O, Mordatch I (2017) Multi-agent actor-critic for mixed cooperative-competitive environments. Adv Neural Inf Process Syst 30
Malencia M, Manjanna S, Hsieh MA, Pappas G, Kumar V (2022) Adaptive sampling of latent phenomena using heterogeneous robot teams (aslap-hr). In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp 8762–8769
Manjanna S, Li AQ, Smith RN, Rekleitis I, Dudek G (2018) Heterogeneous multi-robot system for exploration and strategic water sampling. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, pp 4873–4880
Mayya S, D’antonio DS, Saldaña D, Kumar V (2021) Resilient task allocation in heterogeneous multi-robot systems. IEEE Robot Autom Lett 6(2):1327–1334
Michael N, Shen S, Mohta K, Kumar V, Nagatani K, Okada Y, Kiribayashi S, Otake K, Yoshida K, Ohno K et al (2014) Collaborative mapping of an earthquake damaged building via ground and aerial robots. In: Field and service robotics: results of the 8th international conference. Springer, Berlin/Heidelberg, pp 33–47
Nash JF Jr (1950) Equilibrium points in n-person games. Proc Natl Acad Sci 36(1):48–49
Notomista G, Mayya S, Hutchinson S, Egerstedt M (2019) An optimal task allocation strategy for heterogeneous multi-robot systems. In: 2019 18th European Control Conference (ECC). IEEE, pp 2071–2076
Notomista G, Mayya S, Emam Y, Kroninger C, Bohannon A, Hutchinson S, Egerstedt M (2021) A resilient and energy-aware task allocation framework for heterogeneous multirobot systems. IEEE Trans Robot 38(1):159–179
Pimenta LC, Kumar V, Mesquita RC, Pereira GA (2008) Sensing and coverage for a network of heterogeneous robots. In: 2008 47th IEEE conference on decision and control. IEEE, pp 3947–3952
Prorok A, Hsieh MA, Kumar V (2017) The impact of diversity on optimal control policies for heterogeneous robot swarms. IEEE Trans Robot 33(2):346–358
Prorok A, Malencia M, Carlone L, Sukhatme GS, Sadler BM, Kumar V (2021) Beyond robustness: a taxonomy of approaches towards resilient multi-robot systems. arXiv preprint arXiv:210912343
Ravichandar H, Shaw K, Chernova S (2020) Strata: unified framework for task assignments in large teams of heterogeneous agents. Auton Agent Multi-Agent Syst 34:1–25
Santos M, Diaz-Mercado Y, Egerstedt M (2018) Coverage control for multirobot teams with heterogeneous sensing capabilities. IEEE Robot Autom Lett 3(2):919–925
Schneider-Fontan M, Mataric MJ (1998) Territorial multi-robot task division. IEEE Trans Robot Autom 14(5):815–822
Seraj E, Wang Z, Paleja R, Martin D, Sklar M, Patel A, Gombolay M (2022) Learning efficient diverse communication for cooperative heterogeneous teaming. In: Proceedings of the 21st international conference on autonomous agents and multiagent systems, pp 1173–1182
Shang B, Crowder R, Zauner KP (2014) Swarm behavioral sorting based on robotic hardware variation. In: 2014 4th international conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH), IEEE, pp 631–636
Shehory O, Kraus S (2005) A kernel-oriented model for autonomous-agent coalition-formation in general environments. In: Distributed artificial intelligence architecture and modelling. Springer, Berlin/Heidelberg, pp 31–45
Spica R, Cristofalo E, Wang Z, Montijano E, Schwager M (2020) A real-time game theoretic planner for autonomous two-player drone racing. IEEE Trans Robot 36(5):1389–1403
Wang T, Dong H, Lesser V, Zhang C (2020) Roma: multi-agent reinforcement learning with emergent roles. In: International conference on machine learning. PMLR, pp 9876–9886
Wang M, Wang Z, Talbot J, Gerdes JC, Schwager M (2021a) Game-theoretic planning for selfdriving cars in multivehicle competitive scenarios. IEEE Trans Robot 37(4):1313–1325
Wang T, Gupta T, Peng B, Mahajan A, Whiteson S, Zhang C (2021b) Rode: learning roles to decompose multi- agent tasks. In: Proceedings of the international conference on learning representations
Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L, Full R, Jacobstein N, Kumar V, McNutt M, Merrifield R et al (2018) The grand challenges of science robotics. Sci Robot 3(14):eaar7650
Zardini G, Milojevic D, Censi A, Frazzoli E (2020) A formal approach to the co-design of embodied intelligence. arXiv preprint arXiv:201110756
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2024 Springer-Verlag GmbH Germany, part of Springer Nature
About this entry
Cite this entry
Prorok, A., Bettini, M. (2024). Heterogeneous Teams. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_230-1
Download citation
DOI: https://doi.org/10.1007/978-3-642-41610-1_230-1
Received:
Accepted:
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41610-1
Online ISBN: 978-3-642-41610-1
eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering